所在行政区: 江北新区 编号: GY2019BN15

建设项目环境影响报告表

项 目 名 称:	红瑞国际糖尿病专科医学中心
建设单位(盖章): _	南京红瑞建设管理有限公司

编制日期: 2019年7月

江苏省环境保护厅制

《建设项目环境影响报告表》编制说明

《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。

- 1. 项目名称——指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字)。
- 2. 建设地点——指项目所在地详细地址,公路、铁路应填写起止地点。
- 3. 行业类别——按国标填写。
- 4. 总投资——指项目投资总额。
- 5. 主要环境保护目标——指项目区周围一定范围内集中居民住宅区、学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、性质、规模和距厂界距离等。
- 6. 结论与建议——给出本项目清洁生产、达标排放和总量控制的分析结论,确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。
 - 7. 预审意见——由行业主管部门填写答复意见,无主管部门项目,可不填。
 - 8. 审批意见——由负责审批该项目的环境保护行政主管部门批复。

一、建设项目基本情况

项目名称	红瑞国际糖尿病专科医学中心							
建设单位	南京红瑞建设管理有限公司							
法人代表	谢鹰			J	联系人		郑和	火漫
通讯地址	南京市	工北新	区南京顶	Щ	都市产业	园	03 幢 205-7	'室
联系电话	15295585509	15295585509			/		邮政编码	/
建设地点	南京市江北新区广西埂大街与浦辉路交界以北						,	
立项审批 部门	南京市江北新区管理委员会行政 审批局				批准文号	<u>i.</u>	宁新区管审备 [2018]479 号	
建设性质	新建				行业类别 及代码		-	8415 斗医院
占地面积 (平方米)	29781			绿化面积 (平方米)	- 1	10	432.5	
总投资 (万元)	96000		: 环保投 (万元)		160		环保投资 占总投资 比例	0.16%
评价经费 (万元)	/	预期投产日期					2022年	

原辅材料(包括名称、用量)及主要设施规格、数量(包括锅炉、发电机等):

本项目为医院类项目,属非生产性项目,运营期原辅材料及主要设备清单详见表 1-2 和表 1-3。

水及能源消耗量:

名称	消耗量	名称	消耗量
水(吨/年)	219519.75	燃油(吨/年)	_
电(千瓦时/年)	100万	燃气(万立方米/年)	85.785
燃煤(吨/年)		蒸汽(吨/年)	

废水 (医疗废水☑、生活污水☑)排水量及排放去向:

本项目医疗废水经自建的污水处理站处理达到《医疗机构水污染物排放标准》 (GB18466-2005)表 2 中的预处理标准后,食堂及餐饮产生的废水经隔油池预处理后, 汇同上述医疗废水、生活污水、锅炉排污水一起达到接管标准,排入市政污水管网, 送至桥北污水处理厂集中处理,尾水排入长江。

放射性同位素和伴有电磁辐射的设施的使用情况:

本项目涉及的放射性和伴有电磁辐射的医疗设备另行评价,不在本次评价范围内。

工程内容及规模:

1.项目由来

健康产业是江北新区打造的主导产业之一,由国际健康服务社区作为产业发展核心,引领推动健康一产、二产产业发展,最终形成健康全产业链发展。南京国际健康服务社区是江北新区率先启动发展健康产业的区域,该区域位于江北新区中心区域,规划面积 5.3 平方公里,东临新区核心区 CBD,背山面水,区位条件优越。国际健康城社区将是未来 10 年江北新区居住条件最便利,居住环境优越的高端人群最密集的区域。南京国际健康服务社区定位为国际化标准的人性化服务体验、医养护一体化、宜业宜居宜养的国际健康服务社区。为此,南京红瑞建设管理有限公司拟投资 96000 万元,在南京国际健康城服务社区内,广西埂大街与浦辉路交界以北,新建"红瑞国际糖尿病专科医学中心"项目,本项目总用地面积为 29781.39m²,建筑总面积约为120000m²,其中地上建筑面积约为60000m²,地下建筑面积约为60000m²,主要建设内容为医院用房及配套用房,拟设总床位数 794 张。

对照《建设项目环境影响评价分类管理名录》(2018年4月28日修正),本项目属于三十九、卫生111"医院、专科防治院(所、站)、社区医疗、卫生院(所、站)、血站、急救中心、妇幼保健院、疗养院等其他卫生机构"中"新建、扩建床位500张及以上的"类,故须编制环境影响报告书,但根据《南京江北新区产业技术研创园"区域环评+环境标准"改革试点实施方案(试行)》(宁新区审改[2018]1号)文件要求(附件6),本项目可由报告书简化为报告表审批,因此,本项目将编制环境影响报告表。受建设单位南京红瑞建设管理有限公司委托,南京亘屹环保科技有限公司承担了该项目的环境影响评价工作。亘屹公司接受委托任务后,即组织有关人员进行现场踏勘、区域环境现状调查和基础资料收集,并对项目的建设内容和排污状况进行了资料调研和深入分析,在此基础上,按照国家相关环保法律、法规、污染防治技术政策的有关规定及环境影响评价技术导则要求,编制了《京红瑞建设管理有限公司红瑞国际糖尿病专科医学中心项目环境影响报告表》,提交给建设单位上报环保主管部门审批。

2.工程内容及规模

本项目总用地面积为 29781.39m²,建筑总面积约为 120000m²,其中地上建筑面积约为 60000m²,地下建筑面积约为 60000m²,主要建设内容为医院用房及配套用房,拟

设总床位数 794 张,门诊量约 10 万人次/年。项目的主要建设内容和特点如下:

- (1)本项目主要开设门诊科室(主要包括内科、外科、五官科等)、高压氧科、 影像科、普通门诊、检验科、急诊等,血透、康复科室、手术部、ICU病房及体检科 不涉及传染科。
- (2)该项目检验科不使用氰化钾、氰化钠、铁氰化钠、重铬酸钾、三氧化铬等化 学品,只是进行很少量的常规检验,故不产生含氰、含铬废水或废液。
- (3)该项目营运期口腔科采用一般治疗,不涉及牙齿美容等深度治疗,不使用金属材料,所以该项目口腔科无特殊医疗废水产生。
- (4)该项目影像科将采用数码拍摄,直接用打印机打印结果,故无相片干洗废水产生,无核医学放射科,因此无放射性废水产生。
 - (5) 该项目无洗衣房,在晾晒间设置洗衣机。

本项目经济技术见表 1-1。

表 1-1 本项目经济技术指标一览表

	类别	•	单位	规划要求指标	设计指标	备注
		 可积	m^2	/	29781.64	/
	总建筑面		m ²	/	96449.06	/
	地_	上建筑面积	m ²	/	59348.47	/
		住院楼	m ²	/	27937.99	/
		特殊医疗 用房	m ²	/	12311.93	/
		门诊楼	m ²	/	791.83	/
	其中	急救中心	m ²	/	383.51	/
其中		医疗综合 楼	m ²	/	16444.79	/
		其他辅助 设施	m ²	/	1478.42	/
	地-	地下建筑面积		/	37100.59	含人防
	其中	人防建筑面 积	m ²	/	7381	/
容积率		/	/	≤2.0	1.99	/
建筑 基底面积		/	m ²	/	11600.71	/
建筑密度		/		≤40%	38.95%	/
绿地率				≥35	35.05	/
建筑高度		/	m	≤35	34.95	1#楼、2#楼、 3#楼

		/	/	/	5.70	4#楼	
建筑层数 (地上/地	/		/	/	8F/1D	1#楼、2#楼、 3#楼	
下)		/	/	/	1F/1D	4#楼	
机动车辆数 量	`		/	/	598	/	
	地上停车地下停车	机械停车	<i>‡</i> ar:	/	0		
		自走式停 车	辆	/	7	/	
其中		机械停车	辆	/	174		
		自走式停 车		/	417	/	
非机动车				/		/	
其中		地上	辆	/	55	/	
一 光丁		地下	辆	/	1137	/	

本项目建筑物功能分布见表 1-2。

表 1-2 主要建筑物楼层设置一览表

	农 T T 工文是列扬农公文员							
一、医疗中心(1#)								
楼层	功能							
地下一层	停车场、锅炉房、冷冻机房							
夹层	辅助用房							
地上一层	高压氧科、住院部门厅、药房、门诊大厅、影像科、普通门诊、检验科、急诊							
地上二层	血透、康复科室、手术部、ICU 病房及体检科							
地上三-八层	住院部							
	二、住院二部(2#)							
楼层	功能							
地下一层	停车场							
夹层	厨房及餐厅							
地上一层	配套设施及活动室							
地上二层	病房区、会议室							
地上三层	病房区、医护办公区							
地上四层-八	病房区							
层								
	三、综合楼(3#)							
楼层	功能							
地下一层	停车场							
夹层	厨房、非机动车库							
地上一层	配套设施用房、学术报告厅、多功能厅							
地上二层	配套设施用房、多功能厅							

地上三层-八	专家办公、活动室
层	

本项目辅助工程见表 1-3。

表 1-3 本项目辅助工程一览表

次 1-5 华次日福均工住 见衣							
工程 类别	工程 名称	建设内	7容及设计能力	备注			
	给水	来源于市政给水管	来源于市政给水管网(供水量 219519.75t/a)				
	排水		制,雨水经雨水管网收集后, 污水收集后经市政污水管网,	食堂废水经隔油池处 理,医疗废水自建污水 处理站预处理后汇同 生活污水一起排入市 政污水管网			
公用工程	消防		动报警系统,自动灭火系统, 内设置专用消防水泵和稳压	/			
	供暖		系统、风冷整体式空调机组、 然气热水锅炉用于冬季供暖	/			
	供气	市政天然气管道供应	用于锅炉及食堂、餐饮 使用				
	废气处理	污水处理站恶臭收集 15 米高排气筒高空排	污水处理站为地埋式, 设置在地块西南位置				
		食堂油烟通过油烟净	/				
		锅炉使用低氮燃烧器 内径为(锅炉房位于医疗中心 负一层,约 114m²				
环保工程	污水 处理	食堂废水经隔油池处 预处理后汇同生活污 污水管网,送至桥北; 174993.4t/a)					
	噪声 控制	选取低噪声设备	5、合理布局,加强管理	/			
		一般固废	设生活垃圾收集点	/			
	固废 处理	双凹版	设一般固废暂存间	/			
		危险固废	危险废物暂存间,10m ²	/			
	应急 事故 池		印消防消纳废水,100m³	/			

3.公用工程

(1) 给水

本项目用水主要有生活用水、门诊用水、病房用水、食堂用水和绿化用水,总用水量为 219519.75t/a,由市政自来水管网供给。

(2) 排水

本项目实行雨污分流排水。雨水经雨水管网收集后,排入市政雨水管网。医疗废

水经自建污水处理站处理达到《医疗机构水污染物排放标准》(GB18466-2005)表 2 中的预处理标准,食堂及餐饮经隔油池预处理后,汇同生活污水一起排入市政管网,送至桥北污水处理厂进行深度处理,尾水达到《城镇污水处理厂污水排放标准》(GB18918-2002)表 1 中的一级 A 标准,尾水排入长江;锅炉排污水及反冲洗废水作为清下水,排入市政雨水管网。

(3) 供电

本项目用电量为100万千瓦时/年,由当地市政电网提供。

(4) 供暖

医疗中心:病房及各科室采用风机盘管+新风系统,一层、二层公共区采用一次回风全空气系统,病房区新风采用排风热回收新风系统;冷热源为位于地库 A 区的锅炉房及冷冻机房,空调水系统为二管制,按功能区分区供水,各分区水平及竖向同程;

住院部:采用风机盘管+新风系统,病房区新风采用排风热回收新风系统;冷热源为位于地库 A 区的锅炉房及冷冻机房,空调水系统为二管制,按功能区分区供水,各分区水平及竖向同程;

综合楼: 办公区域采用 VRV 多联机组作为冷热源。多联机室外机组设置于屋顶。 多功能厅采用风冷整体式空调机组过渡季节按照 50%新风比运行,根据回风温度调节 新风比,满足人员卫生需求。

其他需 24h 使用的房间或某些设备用房,如值班室、电梯机房、消防控制室等设独立分体空调。

(5) 供气

本项目使用天然气来源于市政天然气管道供应 85.785x10⁴m³/a。

(6) 贮运工程

本项目设置药品仓库,供储存药品及医用耗材;设置垃圾房、危险废物暂存间, 用于危险废物暂存。

4.主要设备

项目的主要设备汇总见表 1-4。

表 1-4 本项目主要设备汇总一览表

序号	设备名称	科室	数量(台)	
1	C 臂 X 光机	手术室	1	
2	腹腔镜	手术室	1	

_			
3	麻醉机	手术室	3
4	超声刀	手术室	1
5	电动手术床	手术室	3
6	牙椅	口腔科、体检科	2
7	高压氧仓	高压氧科	1
8	电动牵引床	康复科	1
9	肌力训练仪	康复科	1
10	关节活动训练仪	康复科	1
11	血液透析仪	血透室	34
12	生化分析仪	检验科	1
13	血球分析仪	检验科	1
14	血气分析仪	检验科	1
	彩色 B 超(专业心脏机)	超声科	1
1.5	彩色 B 超(中高端全身机)	超声科	2
15	彩色 B 超(中高端全身机)	体检科	1
	彩色 B 超(中端全身机)	体检科	3
16	呼吸机	监护室、急诊科	5
17	真空燃气热水锅炉	供暖、供热水 (Qr=2400kw,85/65℃)	2
合计		66	

5.主要原辅材料

主要原辅材料消耗情况见表 1-5, 危化品见表 1-6, 理化性质见表 1-7。

表 1-5 本项目主要原辅材料消耗汇总一览表

序号	品名	每年使用量	最大储存量	储存位置	用途
1	各类药品	150T	5T	药房	病人使用
2	84 消毒液	1000L	200L	物资库	消毒
3	络合碘	300L	80L	物资库	消毒
4	医用酒精	1000 瓶	100 瓶	物资库	消毒
5	生理盐水	400 瓶	100 瓶	物资库	消毒
6	戊二醛	400L	70L	物资库	消毒
7	双氧水	50L	10L	物资库	消毒
8	一次性输液器	5 万套	1 万套	物资库	病人使用
9	一次性注射器	3万套	1 万套	物资库	病人使用
10	消毒棉签	30 万支	5 万支	物资库	病人使用
11	甲醛	100L	20L	物资库	病人使用

表 1-6 本项目危化品汇总一览表

序号	名称	性质	用途	存放位置	存储量	包装方式	年使用量	
----	----	----	----	------	-----	------	------	--

1	甲酸	毒性	固定标本	检验科	1000mL	瓶装	1000mL
2	高锰酸钾	易制毒二类	消毒	检验科	1000g	瓶装	1000g
3	次氯酸钠	易燃	消毒	后勤库房	100kg	袋装	400kg
4	过氧乙酸	腐蚀品	消毒	检验科	1000mL	瓶装	1000mL
5	乙酸	易燃、腐蚀品	消毒	检验科	100mL	瓶装	100mL
6	松节油	易燃	检验	检验科	100mL	瓶装	100mL
7	无水乙醇	易燃	检验	耗材库房	500mL	瓶装	1000mL
8	乙醇(75%)	易燃	检验	耗材库房	50L	瓶装	200L
9	二氧化碳	危险气体	医疗	手术室	40L	瓶装	400L
10	高氯酸	腐蚀品、易爆	检验	检验科	100mL	瓶装	100mL
11	甲醇	毒性、易燃	检验	检验科	100mL	瓶装	100mL
12	盐酸	易制毒二类、 腐蚀品	消毒	后勤库房	100L	瓶装	400L
13	乙醚	易制毒二类	检验	检验科	500mL	瓶装	500mL
14	氧气瓶	易燃易爆	吸氧备用	氧气库房	400L	瓶装	400L
15	液态氧罐	易燃	中心供氧	后勤库房	10 立方	灌装	50 立方
16	天然气	易燃	供暖及厨房	后勤库房	/	管道	25 万立方
17	84 消毒剂	腐蚀品	消毒	后勤库房	500L	瓶装	2000L
18	杀虫喷雾 剂	易燃易爆	杀虫	后勤库房	5000mL	瓶装	5000mL

表 1-7 主要原辅材料理化性质、毒理毒性一览表

	4	次上/工文 // 11/1/11		
序号	名称	理化特性	燃烧爆炸性	毒理毒性
1	甲酸	无色而有刺激性气味的液体。弱电解质,熔点 8.6℃,沸点 100.8℃。酸性很强,有腐蚀性,能刺激皮肤起泡	/	急性毒性: LD501100mg/kg(大鼠经口), LC5015000mg/m3(大鼠吸入, 15min)。 亚急性与慢性毒性: 小鼠饮水中含 0.01%~0.25%游离甲酸, 2~4 个月内无任何影响; 0.5%则影响食欲并使其生长缓慢。小鼠吸入 10g/m3 以上时, 1~4d 后死亡。 致突变性: 微生物致突变, 大肠杆菌70ppm(3h)。姐妹染色单体互换, 人淋巴细胞 10mmol/L。细胞遗传学分析, 仓鼠卵巢 10mmol/L
3	高锰酸钾	黑紫色、细长的棱形结 晶或颗粒,带真; 与 制成的变形, 是 有机物或易量。 是 有机物或是爆炸。 是 有机物或是爆炸。 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是	易燃	无毒
4	过氧乙 酸	无色液体,有强烈刺激性气味。溶于水、醇、醚、硫酸。属强氧化剂,极不稳定。在-20℃也会	易燃	大鼠经口 LD50: 1540 µ L/kg; 大鼠经 吸入 LC50: 450mg/m3; 小鼠经口 LC50: 210mg/kg; 小鼠经静脉 LC50: 17860 µ g/kg; 兔子经皮肤接触 LD50:

		爆炸,浓度大于45%就		1410 μ L/kg; 豚鼠经口 LD50: 10mg/kg
5	乙酸	有爆炸性,遇高热 纯的无水乙酸(冰醋 酸)是无色的吸湿性固 体,凝固点为 16.6℃ (62℉),凝固后为无 色晶体,其水溶液中呈 弱酸性且蚀性强	/	急性毒性: LD50: 3.3 g/kg(大鼠经口); 1060 mg/kg(兔经皮)。 LC50: 5620 ppm, 1 h(小鼠吸入); 12.3 g/m3,1 h(大鼠吸入)。 人经口 1.47 mg/kg,最低中毒量,出现消化道症状; 人经口20~50 g,致死剂量。80%浓度的醋酸能导致豚鼠皮肤的严重灼伤,50%~80%产生中等度至严重灼伤,小于50%则很轻微,5%~16%浓度从未有过灼伤。人不能在2~3 g/m³浓度中耐受3 min 以上。人的口服致死量为20~50 g
6	无水乙醇	无色澄清液体。有特殊香味。易流动。极易从空气中吸收水分,能与水和氯仿、乙醚等多种有机溶剂以任意比例互溶。能与水形成共沸混合物(含水 4.43%),共沸点 78.15℃。相对密度(d204)0.789。熔点-114.1℃。沸点 78.5℃	易燃	/ /
7	甲醇	无色有酒精气味易挥 发的液体	/	人口服中毒最低剂量约为 100mg/kg 体重,经口摄入 0.3~1g/kg 可致死
8	盐酸	无色透明的液体,有强 烈的刺鼻气味,具有较 高的腐蚀性	不可燃	/
9	乙醚	无色透明液体。有特殊 刺激气味。带甜味。极 易挥发	易燃	急性毒性: LD50: 1215 mg/kg(大鼠经口) LC50: 221190mg/m3, 2 小时(大鼠 吸入)
10	液态氧罐	液化气体,熔点 -218.8℃,相对密度(水 为 1)=1.14,沸点 -183.1℃	不燃	接触高浓度氧的早产婴儿可能遭受延时视网膜损害,长期(24-48小时)100%的成人也可能发生视网膜损害。在2个或更多的气压下,中枢神经系统发生中毒,在3个气压下,在不到2小时内发生中枢神经系统中毒,在6个气压下仅在几分钟内发生。
11	84 消毒	84 消毒液是一种以次 氯酸钠为主的高效消 毒剂,主要成分为次氯 酸钠(NaCIO)。 无色 或淡黄色液体,且具有 刺激性气味	不燃	/
12	次氯酸钠	微黄色(溶液)或白色 粉末(固体),	不燃	具腐蚀性,可致人体灼伤,具有致敏性,经常用手接触本品的工人,手掌大量出汗,指甲变薄,毛发脱落。本品有致敏作用。本品放出的氯气有可能引起中毒。
13	高氯酸	强氧化剂。与还原性有 机物、还原剂、易燃物	助燃	强烈腐蚀性。皮肤粘膜接触、误服或 吸入后,引起强烈刺激症状。

如硫、磷等接触或混合 时有引起燃烧爆炸的 危险。

6.项目平面布置情况

项目位置:本项目位于南京市江北新区广西埂大街与浦辉路交界以北,具体项目位置图见附图1。

周围环境概况: 东侧为在建南京一中江北校区(高中部),南侧隔广西埂大街为石佛寺驾校,西侧和北侧均为在建南京南丁格尔护理学院,本项目周围环境概况见附图 2。

平面布置:本项目平面布置见附图3。

7.工作制度及劳动定员

本项目医护人员 300 人,年工作 365 天,门诊量约 10 万人次/年。

8.产业政策相符性

本项目属于糖尿病专科建设中心建设项目,根据《产业结构调整指导目录(2011年本)》(2013修正本),本项目为鼓励类中第36条第24项"预防保健、卫生应急、卫生监督服务设施建设"和第29项"医疗卫生服务设施建设"的建设项目。

对照《江苏省工业和信息产业结构调整指导目录》及关于修改《江苏省工业和信息产业结构调整指导目录(2012年本)》部分条目的通知(苏经信产业[2013]183号),本项目不属于目录中的鼓励类、限制类和淘汰类,属于允许类建设项目;本项目不属于《江苏省工业和信息产业结构调整限制、淘汰目录和能耗限额》(2015年本)中限制及淘汰类;对照《市政府关于印发南京市建设项目环境准入暂行规定的通知》(宁政发[2015]251号),本项目符合南京市建设项目环境准入暂行规定的要求。

本项目已取得南京市江北新区管理委员会行政审批局(宁新区审备[2018]479号)。 综上所述,本项目建设符合国家及地方的相关产业政策要求。

9.选址、规划相符性分析

(1) 选址相符性分析

本项目位于南京市江北新区南京国际健康城,不属于《限制用地项目目录(2012 年本)》、《禁止用地项目目录(2012 年本)》中限制和禁止用地项目,不属于《江苏省限制用地项目目录(2013 年本)》、《江苏省禁止用地项目目录(2013 年本)》中限制和禁止用地项目。

根据《南京国际健康城产业规划图》,本项目所在地块规划用地性质为医院用地,本项目即为糖尿病专科医学中心的建设,本项目建设符合《南京国际健康城产业规划图》中土地利用规划,因此,本项目选址合理。

(2) 与南京市相关政策、规划相符性

根据市政府办公厅关于印发南京市"十三五"医疗机构设置规划的通知(宁政办发 [2017]18号),将南京全市分为医疗控制发展区和鼓励发展区两类地区,根据南京市医疗资源现有分布情况,南京市政府明确:南京市明城墙以内的空间为医疗控制发展区;明城墙以外空间为医疗鼓励发展区。在符合本《规划》设置要求的前提下,鼓励"新五区"医疗机构和社会办医疗机构提档升级。社会办医疗机构提档升级时类别可以进行转变,办理过程应履行设置审批、执业注册登记、注销原机构等相应程序。 江北新区内的医疗机构设置,在本《规划》的框架内,可根据江北新区整体规划进行适当调整,重点推进南京国际健康服务社区建设,本项目位于南京国际健康服务社区中内,因此,该项目所在区域为南京市的医疗鼓励发展区,与南京市"十三五"医疗机构设置规划相符合。

(3) 与南京国际健康城规划相符性

健康产业是江北新区打造的主导产业之一,由国际健康服务社区作为产业发展核心,引领推动健康一产、二产产业发展,最终形成健康全产业链发展。南京国际健康服务社区是江北新区率先启动发展的区域,社区位于江北新条件优越。社区将是未来10年江北新区居住条件最便利,居住环境最优越的高端人群最密集的区域。南京国际健康服务社区定位为国际化标准的人性化服务体验、医养护一体化、宜业宜居宜养的国际健康服务社区。

本项目为红瑞国际糖尿病专科医学中心项目,则本项目建设符合南京国际健康城 规划要求。

10.污染控制与相关规范的相符性分析

(1)与《医院污水处理设计规范》和《医疗机构水污染物排放标准》的相符性为贯彻"预防为主"的卫生方针,更加完善我国城市污水处理体系,更好地保护环境,防止疾病蔓延,保障人民健康,我国相继发布了《医院污水处理设计规范》和《医疗机构水污染物排放标准》(GB18486-2005)》,提出医院污水处理的一系列规范和

标准要求。

该项目的实施,严格执行相关规范和标准,本次评价对污水处理方案、规范和标准要求进行逐条分析,分析内容和结果见表 1-7 和表 1-8。

经分析可知,该项目污水处理方案与《医院污水处理设计规范》和《医疗机构水污染物排放标准》(GB18486-2005)》要求相符。

表 1-7 与《医院污水处理设计规范》的相符性分析

规范要求	该项目采取的具体措施	备注				
第 1.0.2 条: 凡现有、新建、改造的各类医院 以及其他医疗卫生机构被病菌、病毒所污染的 污水部必须进行消毒处理。	本项目医疗废水经消毒杀菌处理。	符合要求				
第 1.0.3 条:含放射性物质、重金属及其他有毒、有害物质的污水,不符合排放标准时,须进行单独处理后,方可排入医院污水处理设备或城市下水道。	检验科不使用氰化钾、氰化钠、铁氰化 钠、重铬酸钾、三氧化铬等化学品,只 是进行很少量的常规检验,故不产生含 氰、含铬废水或废液;检验室废水含病 体血液、血清等样本,将其作为危废处 置。	符合要求				
第 6.0.1 条:污泥必须经过有效的消毒处理。	污泥拟用次氯酸钠进行消毒处理。	符合 要求				
第7.0.1 条:处理站位置的选择应根据医院总体规划、排出口位置、环境卫生要求、风向、工程地质及维护管理和运输等因素来确定。	污水处理设备为地埋式,其废气经生物 滤池处理后。	符合 要求				
第7.0.2 条: 医院污水处理设施应与病房、居 民区等建筑物保持一定的距离,并应设置隔离 带。	污水处理设备为地埋式,远离病房和居 民区。	符合要求				
第 7.0.3 条: 在污水处理工程设计中,应根据总体规划适当预留余地。	项目实施后医疗废水日产生量约390.36t/d,拟建污水处理站设计处理能力440t/d,留有余量。	符合 要求				
第 7.0.4 条: 处理站内应有必要的计量、安全 及报警等装置。	污水处理设备拟安装流量计及报警仪。	符合 要求				

表 1-8 与《医疗机构水污染物排放标准》的相符性分析

秋 1-0 → 《区 月 小时到八年		
规范要求	该项目采取的具体措施	备注
第 4.2.1 条: 污水处理设备排出的废气应进行除臭味处理,保证污水处理设备周边空气中污染物达到表 3 要求。	项目将对污水处理设施废气采取生物滤 池除臭措施,使污水处理设施周边空气 中污染物达标。	符合要求
第 4.3.1 条: 栅渣、化粪池和污水处理设备污泥属危险废物,应按危险废物进行处理和处置。	污水处理站污泥均将按危险废物委托有 资质单位处理。	符合要求
第 4.3.2 条:污泥清掏前应进行监测,达到表 4 要求。	污泥消毒后作为危险废物外运处理。	符合 要求
第 5.4.2 条: 洗相室废液应回收银,并对废液进行处理。	该项目影像科将采用数码拍摄,直接用 打印机打印结果,故无洗相废水产生。	符合 要求
第 5.4.4 条: 检验室废水应根据使用化学品的性质单独收集,单独处理。	检验室废水根据使用化学品的性质单独 收集,作为危废处置(单独处置)。	符合 要求

第 5.4.5 条: 含油废水应设置隔油池处理。	该项目食堂废水经过隔油池处理后排入 市政污水管网,再处理。	符合 要求
第 5.7 条:采用含氯消毒剂,排放标准执行预处理时,消毒接触池接触时间≥1h,接触池出口总余氯 2-8mg/L。	该项目采用次氯酸钠消毒,消毒接触池接触时间≥1h,接触池出口总余氯总余氯2-8mg/L。	符合要求

(2) 与《医疗废物管理条例》的相符性

医疗废物严格执行《医疗废物管理条例》,本次评价对该项目实施后医院的医疗废物处理处置及管理措施与《医疗废物管理条例》进行逐条分析,分析内容和结果如表 1-9。

表 1-9 与《医疗废物管理条例》的相符性分析

表 1-9 与《医疗废物管	理条例》的相符性分析	
规范要求	该项目采取的具体措施	备注
第七条 医疗卫生机构和医疗废物集中处置单位,应 当建立、健全医疗废物管理责任制,其法定代表人 为第一责任人,切实履行职责,防止因医疗废物导 致传染病传播和环境污染事故。	医院建立医疗废物管理责任制,确定 法定代表人为第一责任人。	符合要求
第八条 医疗卫生机构和医疗废物集中处置单位,应当制定与医疗废物安全处置有关的规章制度和在发生意外事故时的应急方案;设置监控部门或者专(兼)职人员,负责检查、督促、落实本单位医疗废物的管理工作,防止违反本条例的行为发生。	医院制定医疗废物全过程管理规章制度,制订医疗废物泄漏应急方案,设置医疗废物管理专(兼)职人员。	符合要求
第九条 医疗卫生机构和医疗废物集中处置单位,应 当对本单位从事医疗废物收集、运送、贮存、处置 等工作的人员和管理人员,进行相关法律和专业技 术、安全防护以及紧急处理等知识的培训。	医院对本院从事医疗废物收集、运送、 贮存、处置等工作的人员和管理人员, 定期进行相关法律和专业技术、安全 防护以及紧急处理等知识的培训。	符合要求
第十条 医疗卫生机构和医疗废物集中处置单位,应当采取有效的职业卫生防护措施,为从事医疗废物收集、运送、贮存、处置等工作的人员和管理人员,配备必要的防护用品,定期进行健康检查;必要时,对有关人员进行免疫接种,防止其受到健康损害。	医院为从事医疗废物收集、运送、贮存、处置等工作的人员和管理人员, 配备特制成套工作服,并定期进行健康检查。	符合要求
第十一条 医疗卫生机构和医疗废物集中处置单位,应当依照《中华人民共和国固体废物污染环境防治法》的规定,执行危险废物转移联单管理制度。	医院全院执行危险废物转移联单管理制度。	符合要求
第十二条 医疗卫生机构和医疗废物集中处置单位,应当对医疗废物进行登记,登记内容应当包括医疗废物的来源、种类、重量或者数量、交接时间、处置方法、最终去向以及经办人签名等项目。登记资料至少保存3年。	医院全院实施医疗废物全过程管理登 记制度,并系统存档。	符合要求
第十三条 医疗卫生机构和医疗废物集中处置单位,应当采取有效措施,防止医疗废物流失、泄漏、扩散。	医院对相关工作人员定期培训,制订操作规章,实行医疗废物全过程登记制度和医疗废物管理责任制,防止医疗废物流失、泄漏、扩散。	符合要求

第十六条 医疗卫生机构应当及时收集本单位产生的医疗废物,并按照类别分置于防渗漏、防锐器穿透的专用包装物或者密闭的容器内。医疗废物专用包装物、容器,应当有明显的警示标识和警示说明。医疗废物专用包装物、容器的标准和警示标识的规定,由国务院卫生行政主管部门和环境保护行政主管部门共同制定。	医院医疗废物包装袋和容器严格执行 《医疗废物专用包装物、容器标准和 警示标识规定》。	符合要求
第十七条 医疗卫生机构应当建立医疗废物的暂时 贮存设施、设备,不得露天存放医疗废物;医疗废物暂时贮存的时间不得超过2天。 医疗废物的暂时贮存设施、设备,应当远离医疗区、食品加工区和人员活动区以及生活垃圾存放场所,并设置明显的警示标识和防渗漏、防鼠、防蚊蝇、防蟑螂、防盗以及预防儿童接触等安全措施。医疗废物的暂时贮存设施、设备应当定期消毒和清洁。	建立医疗废物的暂时贮存设施,医院 医疗废物暂存间与医疗区和办公区等 区域严格分立,医疗废物贮存时间不 超过2天,每次清运后对暂存间进行 消毒。	符合要求
第十八条 医疗卫生机构应当使用防渗漏、防遗撒的专用运送工具,按照本单位确定的内部医疗废物运送时间、路线,将医疗废物收集、运送至暂时贮存地点。运送工具使用后应当在医疗卫生机构内指定的地点及时消毒和清洁。	医院医疗废物内部运送工具使用周转箱(桶),严格执行《医疗废物专用包装物、容器标准和警示标识规定》,按照制订的操作规章,于指定时间、指定污物路线,运送到医疗废物暂存间,并定时消毒和清洁。	符合要求
第十九条 医疗卫生机构应当根据就近集中处置的原则,及时将医疗废物交由医疗废物集中处置单位处置。医疗废物中病原体的培养基、标本和菌种、毒种保存液等高危险废物,在交医疗废物集中处置单位处置前应当就地消毒。	医院感染性医疗废物在院内就地消毒,医疗废物拟委托有资质单位收集 处置,建设单位对此专门出具了承诺 函。	符合要求

经分析可知,该项目实施后,医院医疗废物全过程管理与《医疗废物管理条例》 要求相符。

11. "三线一单"相符性分析

(1) 生态红线

根据《江苏省生态红线区域保护规划的通知》(苏政发[2013]113 号)、《南京市生态红线区域保护规划》(宁政发[2014]74 号),对照南京市浦口红线区域保护规划图(见附图 4),距离本项目最近的生态红线区域为南京老山森林公园,距项目最近距离约为 3.1km,所在地不在该红线区域管控区内。本项目与南京市浦口区生态红线区布局关系见表 1-10。

表 1-10 本项目与南京市生态红线区布局关系

	红线区域	士导生	红线区域范围		面积	(平方公	(里)	
地区		态功能		二级管控区	总面积	一级管 控区	二级管 控区	备注
浦	南京老	自然	按照市人	东片(可根据规划具体确	111.8	516	57.26	西侧
	山森林	与人	民政府批	定): 东至京沪铁路支线,	6	54.6	57.26	距其

X	公园	文景 观保 护	准的景区 规划确 定。	南至沿山大道,西至宁合高速、京沪高铁,北至桥北规划路(凤凰西路、凤凰东路)、江星桥路、宁连高速、护国路。西片:北至后圩村、森林防火通道,东至万寿河、焦庄、董庄及森林防火通道,		二级 管控 区约 3.1km
				無圧、重圧及森林防火通道, 南至石窑水库、毛村, 西至 森林防火通道。		

根据表 1-10 可知,本项目建设区域与该红线区域无相交区域,不涉及南京市浦口区范围内的生态红线区域,不会导致南京市浦口区内生态红线区域服务功能下降。故本项目的建设符合《江苏省生态红线区域保护规划的通知》(苏政发[2013]113 号)、《南京市生态红线区域保护规划》(宁政发[2014]74 号)的相关要求。

(2) 环境质量底线

根据项目所在地环境质量状况评价可知,项目所在地的环境空气质量除PM₁₀和PM_{2.5}超标之外,其余污染物均达到《环境空气质量标准》(GB3095-2012)二级标准(及2018修改清单),具有一定的环境容量。目前长江南京段干流水质基本可达到III 类水质要求,超标因子以总磷为主,内河入江口及污水处理厂排口附近水质略差。不达标的断面中超标因子主要为总磷,BOD₅、石油类、COD、SS、总氮等因子在桥北污水厂、扬子、化工园污水厂排口处附近断面也出现不同程度的超标。本项目建设后会产生废气、废水、噪声产生,但在采取相应的污染防治措施后,各类污染物的排放一般不会对周边环境造成不良影响,即不会改变区域环境功能区质量要求,能维持环境功能区质量现状。本项目不突破周边环境质量底线。

(3) 资源利用上线

本项目用水取自市政自来水,用电来源为市政供电,项目运营期间用水、用电量较小,不会超过资源利用上线。

(4) 环境准入负面清单

本项目符合国家及地方产业政策,同时,经查《南京市建设项目环境准入暂行规定》(宁政发[2015]251号),本项目符合规定中基本要求,不在其准入规定限制范围内,具体见表 1-11。

表 1-11 与国家及地方产业政策和《南京市建设项目环境准入暂行规定》相符性分析

1	《产业结构调整指导目录》(2011年本) (2013年修正)、《江苏省工业和信息产 业结构调整指导目录(2012年本)》(2013 年修订)	本项目属于《产业结构调整指导目录》(2011年本)中鼓励类项目,本项目不属于《江苏省工业和信息产业结构调整指导目录(2012年本)》中鼓励类、限制类和淘汰类项目,属允许类项目
2	《限制用地项目目录(2012年本)》、《禁止用地项目目录(2012年本)》	本项目不在《限制用地项目目录(2012年本)》、《禁止用地项目目录(2012年本)》中
3	《江苏省限制用地项目目录(2013 年本)》、 《江苏省禁止用地项目目录(2013 年本)》	本项目属于《江苏省限制用地项目目录 (2013 年本)》和《江苏省禁止用地项目目 录(2013 年本)》中限制类和禁止类项目
4	《省政府办公厅转发省经济和信息化委省发展改革委江苏省工业和信息产业结构调整限制淘汰目录和能耗限额的通知》(苏政办发[2015]118号)	不属于淘汰和限制类项目,无能耗限额规 定,不属于南京市禁止准入项目
5	《南京市制造业新增项目禁止和限制目录(2018年版)》	本项目属于医疗服务业,不属于制造业项目,也不属于其禁止和限制类项目
6	《市政府关于印发南京市建设项目环境 准入暂行规定的通知》(宁政发[2015]251 号)	本项目属于[Q8415]专科医院项目,符合规定中"一、基本要求"的相关规定,不在"二、准入规定"限制范围内

由上表可知,本项目符合国家及地方产业政策和《市政府关于印发南京市建设项目环境准入暂行规定的通知》(宁政发[2015]251号)要求。综上所述,本项目建设符合"三线一单"要求。

12.与"两减六治三提升"专项行动方案相符性

《"两减六治三提升"专项行动方案》江苏省环境隐患治理专项行动实施方案中(确保危险废物安全处置)提出"加强危险废物规范化管理",本项目产生的医疗废物、废活性炭、污水处理站污泥属于危险废物,企业按照《危险废物贮存污染控制》(GB18597-2001)(2013年修订)设有危废暂存场所,并委托给有资质的单位进行处置。故本项目建设满足《"两减六治三提升"专项行动方案》的相关要求。

与本项目有关的原有污染情况及主要环境问题:
本项目所在地环境质量良好,项目周边无自然保护区、风景旅游点和文物古迹等
需要特殊保护的环境敏感对象,生态环境质量良好。
本项目为新建项目,项目所在地建设前种植苗木,无污染,因此不存在与之有关
的原有污染情况及主要环境问题。

二、建设项目所在地自然环境简况

自然环境简况(地形、地貌、地质、气候、气象、水文等):

1、地形、地貌、地质

南京地貌特征属宁镇扬丘陵地区,以低山缓岗为主,项目所在区域起伏平缓,地 形较为平坦,为近代长江冲淤作用堆积形成的河漫滩平原,地势低平,河渠及沟塘密 布。南京地区在大地构造单元上位于扬子断块区的下扬子断块,基底由中上元古界浅 变质岩系组成,盖层由华南型古生界及中、新生界地层组成。

南京江北新区地境内地质基础为震旦系变质岩;各时代地层均有发育,但仅有震旦系上统地层出露较好,结构清楚。地貌多姿,集低山、丘陵、平原、岗地、大江、大河为一体;区域属宁、镇、扬丘陵山地西北边缘地带,地势中部高,南北低。老山山脉由东向西横亘中部,制高点大刺山海拔442.1m,平原标高7-5m,山地两侧为岗、塝、冲相间的波状岗地,临江、沿滁为低平的沙洲、河谷平原。土壤多样,水稻土、潮土、黄棕壤占97%以上。

2、气候、气象

南京属北亚热带季风气候区,气候温和、四季分明、雨量适中。降雨量四季分配不均,冬半年(10~3 月)受寒冷的极地大陆气团影响,盛行偏北风,降雨较少;夏半年(4~9 月)受热带或副热带海洋性气团影响,盛行偏南风,降水丰富。全年无霜期 222~224d,年日照时数 1987~2170h,年均气温 15.4°C、平均降雨量 1073.8mm、相对湿度 77%、年均气压 1015.5mb,年均风速 2.2m/s,冬季主导风向 NE、夏季主导风向 SE。年平均风速为 3.5m/s。其主要气象气候特征见表 2-1。

	表 2-1 项目所任地区主要气象、气候特征						
编号		项目	数值及单位				
		年平均气温	15.40℃				
1	气温	极端最高温度	43.0℃				
		极端最低温度	-14.0℃				
2	风速	年平均风速	2.5m/s				
3	气压	年平均大气压	101.5k				
		年平均相对湿度	77%				
4	空气湿度	最热月平均相对湿度	81%				
		最低月平均相对湿度	72%				

表 2-1 项目所在地区主要气象、气候特征

		年平均降水量	1102.2mm
5	降雨量	日最大降水量	301.9mm (2003年7月5日)
		小时最大降水量	75.0mm
6	和	最大积雪深度	510mm
6 积雪、冻土深度		冻土深度	100mm
7	风向和频率	年主导风向和频率	东至北北东 30°

3、水文、水系

南京江北新区所在浦口区分属长江与滁河两条水系,以老山山脉自然分隔,以南为长江水系,以北为滁河水系。江北新区位于长江水系,长江在浦口区境内河道长约49km,江北新区内主要河流有滁河、朱家山河、马汊河等。主要相关河流具体情况如下:

- (1)长江:位于江北新区东南部,是我国的第一大河,流域面积 180 万 km²,长约 6300km,径流资源占全国总量的 36%。长江南京段位于南京东北部,系八卦洲北汊江段,全长 21.6km,其间主要支流为马汊河。
- (2) 滁河:为江北新区的西北部边界,滁河江北新区段南起朱家山河口,北至马汊河口,长 5.8km,河口宽约 300m。滁河是流域的主要行洪通道,也是当地主要航道。
- (3)马汊河:在江北新区北部边界,是滁河分洪河道之一,西起六合小头李,向东经大厂入长江八卦洲北汊,全长约13.6km,兼具排洪和通航作用。在江北新区内河段从滁河至团结河,长3.6km,河段顺直,河口宽160m。
- (4)朱家山河:是滁河支流,河水从北向南流动,长约10.5km,河宽约10m,水深受长江水位影响很大,长江枯水季节河水水深在0.5m左右,河水流速缓慢;夏季往往由于暴雨和长江、滁河水位的增高,使朱家山河的水位增高。朱家山河的水域功能排序为工业、景观、农业,水质目标为IV类,是南京市南京高新区污水处理厂的纳污河流。朱家山河发源于张堡黑扎营的北城圩古沟,经板桥、花旗营行进后路过江北老山东麓,穿过朱家山岭、连通黑水河,到泰山庙、平山、黑桥附近做九十度转弯,接纳南京高新区污水处理厂的废水后经老江口流入长江。

4、植被、生物多样性

南京林木覆盖率 26.4%,建成区绿化覆盖率 45%,属于中国现代植物资源最丰富、植物种类最繁多的地区,植被类型以人工植被和次生植被为主,常见的有麻栎、栓皮栎、枫香、化香树、糯米椴、青冈、苦槠、冬青、菰、何首乌等,区域栖息、繁衍的

国家级保护动物有中华鲟、白鳍豚、扬子鳄、河鹿、江豚、鸳鸯、长耳鹗、短耳鹗等。项目所在区域自然植被的种类与数量较少,以人工种植的景观植被为主。

项目周边未发现自然分布的国家级和省级珍稀濒危物种,也未见名木古树分布。 社会环境简况(社会经济结构、教育、文化、文物保护等):

南京市地处中国东部地区、长江下游、濒江近海。全市下辖玄武区、鼓楼区、六合区等11个区,总面积6597km²,2015年建成区面积923.8km²,常住人口823.6万,城镇人口670.4万人,城镇化率81.4%。南京是国家重要的科教中心,截至2013年,南京有高等院校74所,其中211高校8所;国家重点实验室25所、国家重点学科169个、两院院士83人。

南京市辖 11 个市辖区、2 个县,江北新区包括长江北岸浦口、六合二区的全部行政区以及栖霞区八卦洲街道,区域面积 2450km²,现有常住人口约 168 万。根据内部各个片区经济发展状况和自然资源条件不同,江北新区大致可认为三大中心片区:浦口片区、高新-大厂片区和雄州片区。

1、南京市江北新区简况

南京江北新区位于江苏省南京市长江以北,包括南京市浦口区、六合区和栖霞区八卦洲街道,覆盖南京高新区、南京海峡两岸科工园、南京新材料科技园等园区和南京港西坝、七坝2个港区,规划面积788km²。江北新区现有南京大学、东南大学、南京农业大学、南京工业大学等高校12所,并组建了南京市江北高校联盟,各类科技创新平台和工程技术中心50多个,拥有国家级、省级园区5个。江北新区集水路、铁路、公路、管道等于一体的综合交通运输体系功能比较完善。江北新区拥有94km长江岸线、16km滨江风光带和老山国家森林公园,湖泊湿地资源丰富。

江北新区以浦口、高新一大厂、雄州三大组团为中心,重点提升商贸、枢纽、文化等城市功能。南京新材料科技园大力发展新材料产业,建设世界级新材料产业基地。南京海峡两岸科工园依托宁台合作基础,重点发展集成电路研发设计、文化创意和金融服务等产业。浦口经济开发区重点发展集成电路、智能制造、汽车、轨道交通装备和航空装备等高端装备制造产业。六合经济开发区大力发展节能环保、智能终端等智能装备及临空产业。紫金科技创业特别社区重点发展研发设计、检验检测、科技成果转化等科技服务产业。西坝港和七坝港依托港口优势资源,重点发展综合物流、专业

物流和智慧物流产业。

江北新区南京国际健康城以发展大健康产业为区域核心特色,构建世界级的医护康养住全景式健康服务体系和医教研药械一体化科技支撑体系,打造产业特色鲜明、产业体系完整、高端人才聚集、高端机构密集、经济充满活力、环境生态宜居的国际化城市中心。南京国际健康城建设目标为"三中心一高地",即为前沿医疗服务中心、国际专科服务中心、综合健康服务中心、精准医疗创新和服务高地。

本项目位于南京国际健康城内,广西埂大街与浦辉路交界以北,为红瑞国际糖尿病专科医学中心项目,符合南京国际健康城建设目标。

三、环境质量状况

建设项目所在地区域环境质量现状及主要环境问题(环境空气、地面水、地下水、声环境、辐射环境、生态环境等):

1、大气环境质量现状

根据《南京江北新区区域环境现状调查与评价》(2018 年 8 月),2017 年江北新区环境空气质量达到二级标准的天数为 244 天,空气质量达标率为 66.85%,空气中 PM_{10} 和 $PM_{2.5}$ 为主要污染物。江北新区全年各项污染物指标监测结果: SO_2 、 NO_2 年均值达标; PM_{10} 和 $PM_{2.5}$ 年均值未达标,年均值分别为 0.080mg/m³、0.042mg/m³,超标倍数分别为 0.14 倍和 0.19 倍,项目所在区域为不达标区。

出现超标的主要原因为建设施工过程产生的扬尘、交通运输扬尘等,通过采取如下措施后,项目所在地的大气环境质量能有所改善。

- (1)对施工现场实行合理化管理,使砂石料统一堆放,水泥应设专门库房堆放, 并尽量减少搬运环节,搬运时做到轻举轻放,防止包装袋破裂;
- (2)运输车辆应完好,不应装载过满,并尽量采取遮盖、密闭措施,减少沿途 抛洒,并及时清扫散落在路面上的泥土和建筑材料,冲洗轮胎,定时洒水压尘,以减 少运输过程中的扬尘;
 - (3) 施工现场要设围栏或部分围栏,缩小施工扬尘扩散范围;
- (4) 当风速过大时,应停止施工作业,并对堆存的砂粉等建筑材料采取遮盖措施:
 - (5) 加强道路的硬化覆盖率, 定期洒水抑尘。
 - 2、地表水环境质量现状

根据《南京江北新区区域环境现状调查与评价》(2018 年 8 月),2017 年长江 南京段干流水质基本可达到 III 类水质要求,超标因子以总磷为主,内河入江口及污水处理厂排口附近水质略差。其中,长江新区段 25 个监测断面中,12 个断面达 III 类水环境功能,4 个断面达 IV 类水环境功能,9 个断面达规划的 II 类水环境功能要求。不达标的断面中超标因子主要为总磷,BOD₅、石油类、COD、SS、总氮等因子,在桥北污水厂、扬子、化工园污水厂排口处附近断面也出现不同程度的超标。内河的29 个断面中,22 个断面达到相应水环境功能,7 个断面未能达到相应水环境功能要

求,不达标断面中超标因子主要为氨氮、总磷和 BOD5; 主要超标的河流为马汊河、 高旺河、七里河、朱家山河、石头河。朱家山河设有南京高新区污水处理厂排口,主 要污染源为生活污染与工业污染,污染形式主要以支流、泵站汇入为主。

江北新区内河超标的主要原因是生活污水污染和工业污染,主要超标因子为氨氮、总磷和 BOD₅。针对上述生活污水和工业污染现象,主要为上述河流沿线的生活污水面源污染及少量工业废水未接管排放的污染。采取的治理措施有:

- (1) 统筹推进城区市政道路雨污水管网改造、城区合流制小区和居住区雨污分流改造、集镇污水管网新建和分流改造、农村居民点生活污水治理,实施城区和集镇范围内机关及企事业单位雨污分流改造,加大新建管网和泵站配套及老旧管网改造、破损修复力度,提升污水收集率。
- (2)加大对工业集聚区污染治理力度,严厉打击企业非法排污和各类环境违法 行为,推动工业废水治理提档升级,有效控制和削减工业污染。
 - (3) 加强对内河水系疏浚沟通工程,实现水系排水畅通。
- (4) 明晰管护责任。内河分别由各镇(街、区)和相关村(社区)按照属地管理原则负责管理。健全管护体系。全面落实"河长制"管理要求,市城管局、各镇(街、区)、村(社区)成立专门的管护机构,充实管护力量,加强对管护人员的考核,同时积极推行管养分离,健全完善市场化运作机制,切实提升管养效能。强化考核奖惩。对城区景观河道、骨干河港、乡级河道和村庄河塘分别制定管护标准和考核办法,市相关部门切实加强考核管理,确保管护责任、管护措施落实到位,根据考核结果划拨管护经费。

采取以上治理措施后能有效改善项目所在地地表水水环境质量。

3、声环境质量现状

根据《南京江北新区区域环境现状调查与评价》(2018 年 8 月),2017 年江北新区主要干道交通噪声昼间等效声级年均值 67.1dB(A), L_{10} 、 L_{50} 及 L_{90} 年均值分别为 69.1dB(A)、64.3dB(A)、59.9dB(A),除公园北路监测点(Leq 为 71.6dB(A))外,其余交通干道均达到 4a 类标准;2017 年江北新区 52 个区域声环境等效声级 Leq 为 53.9dB(A), L_{10} 、 L_{50} 及 L_{90} 分别为 55.8 dB(A)、51.0dB(A)及 47.5dB(A)。根据江北新区各区域噪声功能区分类,可以发现除交警大队、开发区时代大

道、湖荡路以及宁六公路 4 个区域噪声不满足功能标准外(7.6%),其余 48 个区域 均能满足噪声功能区标准(92.4%)。江北新区总体上能够满足区域环境噪声功能区 标准,区域声环境质量良好。

主要环境保护目标(列出名单及保护级别):

本项目所在地位于南京市江北新区广西埂大街与浦辉路交界以北。根据实地踏勘,项目周边没有特殊的自然保护区、风景名胜区或文物景观。根据本项目的工程特性以及国家的相关规定,确定项目地周围的主要环境保护目标见表 3-1。

表 3-1 项目周围环境保护目标

农 3-1 项目周围外境保护目标						
环境要素	环境保护目标	方位	最近距离	规模	功能执行标准	
	南京一中江北校区 (在建)	东侧	80m	2000 人		
	南京南丁格尔护理学院 (在建)	西、北 侧	40m	1500 人		
大气环境	观山悦小区	西北侧	280m	300 户	《环境空气质量标准》	
八八小元	世茂荣里小区	西北侧	490m	780 户	(GB3095-2012)二级标准	
	阳光帝景小区	北侧	340m	450 户		
	浦口区定向河小学 (拟建)	东北侧	450m	4500 名(学 生+教师)		
地表水	定向河	西南	1300	小型河流	《地表水环境质量标准》 (GB3838-2002)IV类标准	
环境	长江	东南	1600	大型河流	《地表水环境质量标准》 (GB3838-2002)II类标准	
声环境	南京一中江北校区 (在建)	东侧	5m	2000 人	《声环境质量标准》	
	南京南丁格尔护理学院 (在建)	西北侧	40m	1500 人	(GB3096-2008)2 类标准	
生态环境	南京老山森林公园二级 管控	西侧	3100m	57.26km ²	自然与人文景观保护	

准

四、评价适用标准及总量控制指标

1.大气环境质量标准

本项目所在地环境空气质量属于二类功能区,环境空气质量执行《环境空 气质量标准》(GB3095-2012)二级标准, H₂S 和 NH₃ 执行《环境影响评价技 术导则 大气环境》(HJ2.2-2018)附录 D 其他污染物空气质量浓度参考限值, 具体见表 4-1。

表 4-1 环境空气质量标准限值 单位: μg/m³

V		I EL Mg/ III	
污染物名称	取值时间	浓度限值	标准来源
	年平均	60	
SO_2	24 小时平均	150	
	1 小时平均	500	
	年平均	40	
NO_2	24 小时平均	80	
	1 小时平均	200	
CO	24 小时平均	4000	《环境空气质量标准》
СО	1 小时平均	10000	(GB3095-2012) 二级标准
	日最大8小时平均	160	
O_3	1 小时平均	200	
DM.	年平均	70	
PM_{10}	24 小时平均	150	
DM	年平均	35	
PM _{2.5}	24 小时平均	75	
NH ₃	1 小时均值	0.20mg/m ³	《环境影响评价技术导则 大气
H_2S	1 小时均值	0.01mg/m^3	环境》(HJ2.2-2018)附录 D

2.地表水环境质量标准

根据《江苏省地表水(环境)功能区划》,项目所在区域长江南京段和定 向河的水质分别执行《地表水环境质量标准》(GB3838-2002)II和IV类标准, SS 参考执行水利部试行标准《地表水资源质量标准》(SL63-94)中标准,具 体见表 4-2。

表 4-2 地表水环境	医质量标准主要指标值 单	单位:mg/L,pH 除外
项目	IV类	II类
рН	6~9	6~9
COD	≤30	≤15
BOD ₅	≤ 6	≤ 3
氨氮	≤1.5	≤0.5
总磷(以P计)	≤0.3	≤0.1
总氮	≤1.5	≤0.5
DO	≥3	≥6
SS	≤60	≤25
石油类	≤0.5	≤0.05
粪大肠菌群,≤(个/L)	≤20000	≤2000
氯化物**	250	250

3.声环境质量标准

根据《声环境质量标准》,本项目所在区域为 2 类声环境功能区,本项目噪声执行《声环境质量标准》(GB3096-2008)中 2 类标准,临广西埂大街一侧 35m 范围内执行 4a 类标准,具体见表 4-3。

表 4-3 声环境质量标准限值 单位: dB(A)

1	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7							
	类别	昼间	夜间	标准来源				
	2	60	50	《声环境质量标准》(GB3096-2008)				
	4a	70	55	《户外境灰里你在》(GB3090-2008) 				

1.废气排放标准

本项目废气主要为污水处理站产生的恶臭,有组织臭气排放执行《恶臭污染物排放标准》(GB14554-93)表2恶臭污染物排放标准,食堂及餐饮油烟排放浓度执行《饮食业油烟排放标准(试行)》(GB18483-2001)中相应的标准,锅炉废气中污染物 SO₂、烟尘排放浓度执行《锅炉大气污染物排放标准》(GB13271-2014)中表3中燃气锅炉大气污染物特别排放限值标准,具体标准值详见表4-4至表4-6。

表 4-4 污水处理站周边大气污染物最高允许浓度

序号	控制项目	排气筒高度(m)	排放量(kg/h)	标准来源
1	氨	15	4.9	《恶臭污染物排放标准》
2	硫化氢	15	0.33	(GB14554-93)表 2 标准

表 4-5 饮食业油烟排放标准

类型	小型	中型	大型	标准来源
基准灶头数	≥1, <3	≥3, <6	≥6	《饮食业油烟排放
最高允许排放浓度(mg/m³)	2.0			标准》
净化设施最低去除率(%)	60	75	85	(GB18483-2001)

表 4-6 锅炉大气污染物特别排放限值

污染源	项目	标准限值mg/m³	标准来源
	SO_2	50	《锅炉大气污染物排放标准》
锅炉	颗粒物	20	(GB13271-2014)中表2标准
	NOx*	50	宁环办 (2019) 62号

- ①燃气锅炉烟囱高度为 43m,满足《锅炉大气污染物排放标准》(GB13271-2014)中燃油、燃气锅炉烟囱不低于的规定,且高出周边 200m 范围内建筑物 3m 以上。
- ②*根据《关于进一步明确燃气锅炉低氮改造相关要求的通知》(宁环办[2019]62号),全市所有新建燃气锅炉,氮氧化物排放浓度应低于50毫克/立方米。

2.废水排放标准

本项目医疗废水经自建的污水处理站处理达到《医疗机构水污染物排放标准》(GB18466-2005)表 2 中的预处理标准后,食堂及餐饮废水经隔油池预处理后,汇同上述医疗废水、生活污水、锅炉排污水一起达到接管标准,排入市政污水管网,送至桥北污水处理厂集中处理,尾水排入长江。接管标准执行《污水综合排放标准》(GB8978-1996)表 4 中三级标准,其中氨氮、TP 参照执行《污水排入城镇下水道水质标准》(CJ343-2010)B 等级相关标准,桥北污水处理厂尾水排放执行《城镇污水处理厂污水排放标准》(GB18918-2002)表 1 中的一级 A 标准,具体标准值详见表 4-8。

	4-8 本项目发水排放标准						
项目	单位	预处理标准	接管标准	《城镇污水处理厂污染物排 放标准》(GB18918-2002) 一级 A 标准(尾水标准)			
рН	无量纲	6~9	6~9	6~9			
COD	mg/L	≤250	500	≤50			
SS	mg/L	≤60	400	≤10			
氨氮	mg/L	ı	≤45	≤5 (8) *			
总磷	mg/L	ı	≤8	≤0.5			
动植物油	mg/L	≤20	100	≤1			
粪大肠菌群数	MPN/L	≤5000	≤5000	≤1000			
总余氯 (氯法消毒时)	mg/L	≤0.5	>2 (接触时间 ≥1h)	-			

注: *括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。

3.噪声排放标准

本项目施工期噪声执行《建筑施工场界环境噪声排放标准》 (GB12523-2011),本项目运营期厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中的2类标准,临广西埂大街侧35m内执行4类标准,详见表4-9~4-10。

表 4-9 建筑施工场界环境噪声排放标准值 单位: dB(A)

昼间	夜间	标准来源	
70	55	《建筑施工场界环境噪声排放标准》	(GB12523-2011)

表 4-10 工业企业厂界环境噪声排放标准值 单位: dB(A)

类别	昼间	夜间	标准来源
2 类	60	50	《工业企业厂界环境噪声排放标准》
4 类	70	55	(GB12348-2008)

4.固体废物

项目营运期产生的医疗废物按危险废物处置方法处理,执行《医院废物专用包装物、容器标准和警示标准》、《医疗废物管理条例》以及地方危废管理的相关规定;医疗废物暂存场地应满足《危险废物贮存污染控制标准》(GB18597-3001)及《危险废物贮存污染控制标准》(GB18597-3001)标准修改单(2013.6.8)修改。

总量控制指标

本项目建成后,污染物排放总量指标见表 4-11。

表 4-11 本项目污染物排放总量表 单位: t/a

类别	污染物名称		产生量	消减量	接管量	最终外排量	
		污水处	氨	0.173	0.1643	/	0.0087
		理站	硫化氢	0.023	0.0228	/	0.0002
废气	有组	食堂、 餐饮	油烟	5.81	5.784	/	0.026
	9 织	锅炉	SO_2	0.311	0	/	0.311
			NOx	0.423	0	/	0.423
			烟尘	0.187	0	/	0.187
	废水量 COD		174993.4	0	174993.4	174993.4	
			COD		21.373	50.563	8.724
		SS		40.593	25.647	14.946	1.745
废	氨氮		6.497	0	6.497	0.872	
水	总磷		0.851	0	0.851	0.0872	
		动植物油		2.148	1.611	0.537	0.0215
粪フ	** 士	粪大肠菌群数(MPN/L)		2.3×10^{19}	2.29×10^{19}	7.1×10 ¹³	1.4×10^{13}
	共八			MPN	MPN	MPN	MPN
		生活垃圾		656.27	656.27	/	0
固 — 废 —		餐饮垃圾		523.54	523.54	/	0
	废油脂		5.7	5.7	/	0	
	医疗废物		243.13	243.13	/	0	
	污水处理站污泥		80	80	/	0	

- (1)废气:本项目有组织废气为氨 0.0087t/a,硫化氢 0.0002t/a, SO_2 0.311/a、NOx 0.423t/a、烟尘 0.187t/a;油烟排放量为 0.026t/a,均作为考核因子,不申请总量。
- (2)废水:本项目废水污染物接管量为:废水量 174993.4t/a、COD 50.563t/a、SS 14.946t/a、氨氮 6.497t/a、总磷 0.851t/a、动植物油 0.537t/a;最终外排量为:废水量 174993.4t/a、COD 8.724t/a、SS1.745t/a、氨氮 0.872t/a、总磷 0.0872t/a、动植物油 0.0215t/a。接管量作为考核量,水污染物最终排环境量作为申请水污染总量指标的依据,由环保主管部门在桥北污水处理厂内平衡解决。

(3) 固体废物总量指标

本项目产生的固体废物均得到妥善处理处置,排放总量为零。

五、建设项目工程分析

(一) 施工期

本项目为新建项目,施工期基本的工艺和污染工序流程图见图 5-1。

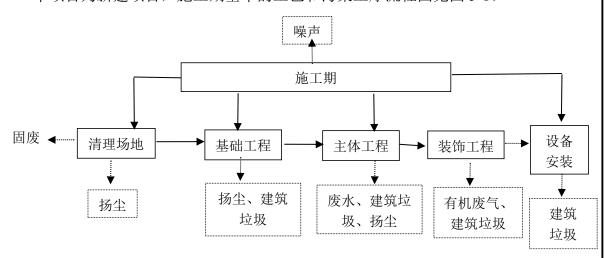


图 5-1 施工期工艺流程图

1.工艺流程说明:

①基础工程

建设项目基础工程主要为场地的平整、填土和夯实。建筑工人利用推土机等设备 将对地块进行改造,使地块内坡度减缓,会产生一些粉尘、建筑垃圾和噪声污染。由 于作业时间较短,粉尘和噪声只是对周围局部环境影响,从整个施工期来看,对周围 环境影响较小。

②主体工程

建设项目主体工程主要为钻孔灌注,现浇钢砼柱、梁,砖墙砌筑。建设项目利用钻孔设备进行钻孔后,用钢筋混凝土浇灌。浇灌时注入预先拌制均匀的混凝土,随灌随振,振捣均匀,防止混凝土不实和素浆上浮。然后进行钢筋的配料和加工,安装于架好的模板之处,及时连续灌筑混凝土,并捣实使混凝土成型。建设项目在砖墙砌筑时,首先进行水泥砂浆的调配,然后再挂线砌筑,建设后。该工段主要污染物为施工机械产生的噪声、尾气,建筑垃圾。

③装饰工程

利用各种加工机械对木材、塑钢等按图进行加工,同时进行墙面制作,然后采用 浅色环保型高级涂料和浅灰色仿石涂料喷刷,最后对外露的铁件进行油漆施工,本工

段时间较短,且使用的涂料和油漆量较少,有少量的有机废气挥发。

④设备安装

建设项目地块内道路、沉淀池、以及垃圾中转站内压缩箱体等设备的安装,主要污染物是施工机械产生的噪声、建筑垃圾。

2.施工期污染源分析

(1) 废水

本项目施工期废水主要为施工生产废水和施工人员产生的生活污水。

①施工生产废水

施工生产用水主要用于工程养护,工程养护中约有 70%的水流失,流失时夹带泥沙、杂物,处理不当会污染环境。该项目施工机械含油废水、各种施工及运输车辆冲洗废水等,均要妥善处置,不得任意排放。

②施工生活污水

施工人员平均按 50 人计,生活用水量按 50L/人·日计,施工期约 3 年,共计 900 天,则生活用水量为 2250m³。生活污水的排放量按用水量的 80%计,则生活污水的排放量为 1800m³,该污水的主要污染因子为 COD、SS、氨氮、TP,其污染物浓度分别为 350mg/L、200mg/L、15mg/L、4mg/L,则 COD 产生量 630kg,SS 产生量为 360kg,氨氮产生量 27kg,TP 产生量为 7.2kg。施工期生活污水依托项目周围已建污水管网接管至桥北污水处理厂进行处理。

(2) 废气

本项目施工期废气主要为施工扬尘、施工过程的燃油废气、装修废气,其中以施工扬尘对大气环境质量影响最大。

①施工扬尘

施工扬尘的主要来源包括:

- a)项目场地平整和地基处理中,土方挖掘、搬运、倾倒过程中产生的粉尘;
- b) 散装建筑材料在其装卸、运输、堆放等过程中,因风力作用而产生的扬尘;
- c)制备建筑材料如混凝土搅拌的过程,会有粉状物逸散;
- d) 原料堆场和暴露松散土壤的工作面, 受风吹影响时, 会产生扬尘。

本项目新增建筑面积为 120000m², 根据中国环境科学研究院研究的建筑扬尘排放

经验因子 0.292kg/m²,可估算出本项目施工期建筑扬尘排放量约为 35.04t。经类比分析,施工场地扬尘浓度在 1.5~3.0mg/m³。在施工过程中,施工单位必须严格依照城市扬尘防护规定进行施工,尽量减少扬尘对周围环境的影响。

②燃油废气

施工过程用到的施工机械主要为施工车辆、挖掘机、装载机、推土机等机械,以 柴油为燃料,会产生一定量废气,包括 CO、NOx、THC 等。燃油废气为间断性排放, 且排放量较小,施工期加强设备的维护,保证其正常运行,则燃油废气对项目周围环 境影响较小。

③装修废气

装修废气主要来源于室内装修,主要对部分内墙进行涂料粉刷和对部分外露的铁件进行油漆粉刷,以无组织形式排放。本项目装修过程使用的涂料均为水性环保涂料,不涉及有机溶剂,产生的有机废气量较少。装修期间加强室内的通风换气,对周边环境影响较小。

(3) 噪声

施工期间噪声主要来源于施工场地各类机械设备噪声、运输车辆的交通噪声。在 施工阶段,随着工程的进度和施工工序的更替,会采取不同的施工机械和施工方法, 不同施工阶段各类施工机械声源强度见表 5-1。

表 5-1 各类施工机械的噪声声级一览表

施工阶段	声源	声级/dB(A)		
	推土机	100-110		
1. 子7人 5几	挖土机	110		
土方阶段	运输车辆	90-100		
	气锤、钻机	90-100		
打桩阶段	打桩机	85-105		
	混凝土输送车	90-100		
	吊车、升降机等	95-105		
结构阶段	电锯、电刨	100-115		
	振捣棒	100-110		
	电焊机	90-100		
装修阶段	切割机	90-100		
	木工刨	90-100		

由表 5-1 可以看出,各类机械施工的噪声级均比较大,需要加强施工期间的噪声防治,减轻对周围声环境的影响。

(4) 固体废物

施工期间固废主要为施工挖掘的弃土、建筑垃圾以及施工人员产生的生活垃圾。

①弃土

本项目产生的弃土由市政统一运输及处理。

②建筑垃圾

在工程施工过程中,建筑垃圾主要为建筑碎片、碎砖头、废物料等,参照《环境统计手册》,单位面积施工固体废物的产生系数为 144kg/m²,本项目总建筑面积为 120000m²,则建筑垃圾产生量约为 17280t。对施工期产生的建筑垃圾应分类收集和处理,严禁随意倾倒、填埋,造成二次污染。

③生活垃圾

施工期高峰期施工人员约 50 人,工地人均生活垃圾按 0.1kg/d·人计,施工期约为 3 年,共计 900 天,则生活垃圾产生量为 4.5t。施工人员生活垃圾收集后,由环卫部门统一收集处理。

(5) 水土流失

施工期间在场地开挖时,由于土石方堆放量较大,堆置临时弃土,土壤裸露,结构松散,易被雨水冲刷造成水土流失。因此,在进行土石方开挖作业时,土方堆场周围应设置排水沟及沉淀池,其次在尽量不在雨季进行开挖作业或只进行小规模作业,尽可能降低水土流失的影响。

(二) 营运期

1、水污染源分析

本项目运营期用水主要为医护人员生活用水、食堂及餐饮用水、门诊用水、病房用水、手术室用水、检验室用水、锅炉用水和绿化用水,用水定额参照《江苏省城市生活与公共用水定额(2012年修订)》用水定额核算。

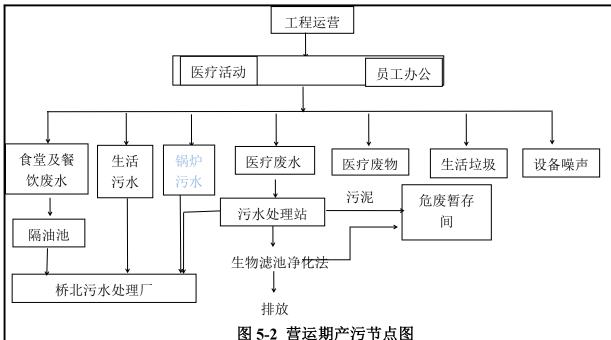


图 5-2 营运期产污节点图

主要污染工序:

(1) 医护人员生活用水及污水

本项目医护人员 300 人, 用水量按 120 L/(人·天)计, 年工作 365 天, 则生活用 水量为 13140t/a, 产污系数按 0.8 计,则本项目医护人员生活污水产生量为 10512t/a。

(2)食堂用水及废水

本项目食堂用水量按 50 L/(人·天)计,食堂每日就餐人次按 1300 人,则用水量 约为 23725t/a, 产污系数按 0.8 计,则本项目食堂废水产生量为 18980t/a。

(3) 商业餐饮用水及废水

本项目配套商业餐饮面积约 1373.59m², 类比同类商业项目, 用餐人数按 300 人 次/日,按照 30L/(人•次),则用水量约为 3285t/a,产污系数按 0.8 计,则本项目餐 饮废水产生量为 2628t/a。

(4) 门诊用水及废水

门诊用水量按 36L/(人·次)计,本项目日均就诊人次按 300 人计,则门诊年用水 量为 3942t/a, 产污系数按 0.8 计,则本项目门诊废水产生量为 3153.6t/a。

(5) 病房用水及废水

本项目设计病床数为 794 张,病房废水按 600L/(床·d)计,则病房用水量为 173886t/a, 产污系数按 0.8 计,则病房废水产生量为 139108.8t/a。

(6) 手术室用水及废水

本项目有 3 间手术室,手术室供应中心用水按 250L/间·d 计,则病房用水量为 273.75t/a,产污系数按 0.8 计,则洗衣废水产生量为 219t/a。

(7) 检测室用水

根据同类医院用水量类比,该项目检验用水量约为 1t/a。项目检验科不使用氰化钾、氰化钠、铁氰化钠、重铬酸钾、三氧化铬等化学品,只是进行很少量的常规检验,故不产生含氰、含铬废水或废液,但检验室废水含病体血液、血清等样本,故将其收集后作为危废处置。

(8)锅炉用水

本项目设置 2 台 Qr=2400kw(单台热水量为 3.4t/h)燃气热水锅炉用于医院冬季供暖,这种热水锅炉属于常压锅炉,仅在锅炉用水里加些阻垢剂即可,不需制备专用软水。南京医院供暖季通常从 12 月初至来年的 3 月底,供暖时间约为 4 个月(约 120d/2880h),本项目热水锅炉的单位时间的热水量为 6.8 t/h,则整个供暖季的循环热水量为 19584t/a,锅炉产污系数通常为 2%~3%,本项目取 2%,则锅炉排污水量约为为 392t/a,也就是锅炉补充用水为 392t/a,锅炉排污水主要是盐和极少量的阻垢剂,可直接排入污水管网进污水厂处理。

(9) 绿化用水

本项目绿化面积为 10432.5m²,根据《江苏省城市生活与公共用水定额》(2012年修订)中绿化用水量标准 1、4季度 0.6L/m²·次,2、3季度 2 L/m²·次计,每周 2 次、全年 104 次计算,则年绿化用水量约为 1410.47t/a,本项目设置雨水回收装置,将回收雨水部分用于绿化,根据建设单位提供资料,本项目雨水回收装置年回用总量为11307.7m³/a,则本项目所有绿化用水,均来源于回收的雨水。

综上所述,本项目总的用水量为 219498.97/a,废水量为 174471t/a,建设项目用水及废水产生情况汇总见表 5-2 所示。

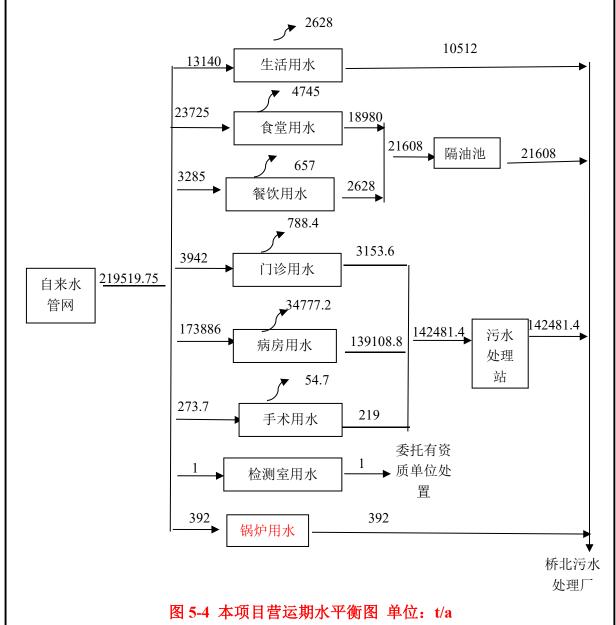

		1 1 7 7 1 4 1 2 7 4 1 1 1 4 1		
序号	项目名称	用水量	产污系数	排水量
1	医护人员生活	13140	0.8	10512
2	食堂	23725	0.8	18980
3	门诊	3942	0.8	3153.6
4	病房	173886	0.8	139108.8
5	商业餐饮	3285	0.8	2628

表 5-2 本目用水及排水量汇总表 单位: t/a

6	手术室	273.75	0.8	219
7	检测	1	/	
8	锅炉用水	392	/	392
	合计	219519.75	/	174993.4

本项目医疗废水经自建污水处理站处理达到《医疗机构水污染物排放标准》(GB18466-2005)表 2 中的预处理标准,食堂及餐饮经隔油池预处理后,汇同生活污水、锅炉排污水一起排入市政管网,送至桥北污水处理厂进行深度处理,尾水达到《城镇污水处理厂污水排放标准》(GB18918-2002)表 1 中的一级 A 标准,尾水排入长江。

本项目用排水平衡见图 5-3。

36

			表	5-3 项	目废水	产生及抗	非放情况表				
	废		污染物	勿产生		污药	杂物接管	污染	物最	终排放	
污染源	水量 (t /a)	污染物	浓度 (mg/L)	产生量 (t/a)	处理 措施	浓度 (mg/I)	接管量 (t/a)	浓度 (mg)		排放 量 (t/a)	排放 去向
医护		COD	400	4.205		400	4.205	50		0.5256	
人员	105	SS	200	2.102	–	200	2.102	10		0.1051	
生活	12	氨氮	35	0.368	7	35	0.368	5		0.0526	
污水		总磷	5	0.053		5	0.053	0.5		0.0053	
		COD	500	10.738		500	10.738	50		1.0738	
食	216	SS	200	4.295		200	4.295	10		0.2148	
堂、	216	氨氮	20	0.430	隔油	20	0.430	5		0.1073	
餐饮	08	总磷	4	0.086	池	4	0.086	0.5		0.0107	
废水		动植 物油	100	2.148		25	0.537	1		0.0215	桥北 污水
\ <u></u>		COD	400	56.993		250	35.620	50		7.1241	处理
门		SS	240	34.196		60	8.549	10		1.4248	广
诊、 病	142	氨氮	40	5.699	污水	40	5.699	5		0.7124	
人、	481	总磷	5	0.712	业理	5	0.712	0.5		0.0712	
手术室	.4	类大 肠菌 群数	1.6×10 ⁸ MPN/L	2.3×10 ¹⁹ MPN	站	5000 MPN/L	7.1×10 ¹³ MPN	1000 MPN		1.4×1 0 ¹³ MPN	
锅炉排污	392	COD	50	0.0196	/	/	/	50		0.0196	
水	0,2	SS	10	0.004		/	/	10		0.004	
		COD	412.3	71.936		290	50.563	50		8.7235	
		SS	232.7	40.593		85.7	14.946	10		1.7447	
		氨氮	37.2	6.497	│ │ 隔油	37.2	6.497	5		0.8723	桥北
混合	174	总磷	4.8	0.851	池、	4.8	0.851	0.5		0.0872	污水
废水	993	动植 物油	12.3	2.148	污处 理站	3.0	0.537	1		0.0215	处理
		粪大 肠菌 群数	1.3×10 ⁸ MPN/L	2.3×10 ¹⁹ MPN		<5000 MPN/L		<100 MPN/		1.4×1 0 ¹³ MPN	
							杂物"三本帅		* **		
	杂物名		产生量(削减量		接管量(174003		排	入环境量	
废水量 174993.4 0 174993.4		.4		174993	.4						

1	\neg
	- /
J	-/-

21.373

25.647

0

50.563 14.946

6.497

71.936

40.593

6.497

COD

SS

NH₃-N

8.7235

1.7447

0.8723

TP	0.851	0	0.851	0.0872
动植物油	2.148	1.611	0.537	0.0215
米十匹古出	2.3×10 ¹⁹	2.29×10 ¹⁹	7.1×10^{13}	1.4×10 ¹³
粪大肠菌群	MPN	MPN	MPN	MPN

2、废气

本项目营运过程中产生的废气主要为天然气燃烧废气、食堂及餐饮油烟废气、锅炉废气、污水处理厂恶臭、地下车库废气。

(1) 天然气燃烧废气

该项目食堂每天用餐人数按 1300 人计,年工作日为 365 计,就餐人数约为 474500 人次/年,天然气用量按 0.1m³/人次计,食堂年使用天然气约 4.745×10⁴m³,类比同类商业餐饮用量,本项目配套商业餐饮用餐人数按 300 人次/日计,则商业餐饮厨房年使用天然气约 3.28×10⁴m³。燃料燃烧排放的废气主要为烟尘、SO₂、NO_x(以 NO₂ 计),根据《第一次全国污染源普查-城镇生活源产排污系数手册》,计算结果见下表 5-5。

	PCC C / t//// (H4	/ 	
污染物	天然气燃烧产污系数	污染物排放量	污染物排放浓度(mg/m³)
	天然气使用量	8.025	×10 ⁴ m ³ /a
废气	12.8 万 m ³ /10 ⁴ m ³	102.72 万 m³/a	_
SO_2	0.02S(S 取 200) kg/10 ⁴ m ³	32.1kg/a	31.25
NOx	$100 \text{ kg}/10^4 \text{m}^3$	802.5kg/a	781.25
颗粒物	$0.01 \text{ kg}/10^4 \text{m}^3$	0.0803kg/a	0.782

表 5-5 天然气的产生污染物与统计

(2)油烟废气

本项目食堂每天用餐人数按 1300 人计,年工作日为 365 计,日工作时间 6h,就餐人数约为 474500 人次/年,食用油用量按平均 0.01kg/人次计,则食堂年食用油用量为 4.75t/a;根据类比调查,配套商业餐饮用房按人均 10g/d 计,每天商业餐饮用餐人数按 300 人次/日计,则商业餐饮用房年总食用油用量为 1.10t/a,则本项目食用油用量共为 5.85t/a,据餐饮业的调查和监测,不同的炒炸工况油的挥发量不同,平均约占总耗油量的 2%~4%,本评价以 3%计,油烟去除率按 85%计,油烟排放量为 0.026t/a。油烟净化设施的有效风量为 15000m³/h,经计算油烟排放浓度为 1.19mg/m³,油烟排放浓度能够满足《饮食业油烟排放标准(试行)》(GB18483-2001)中规定的浓度限值(2.0mg/m³)要求,达标后经通过建筑物内专用排烟通道引至屋顶排放,油烟排放口应避开周围敏感点。本项目食用油消耗和油烟废气产生情况见表 5-6。

表 5-6 项目食用油消耗和油烟废气产生和排放情况一览表						
类型	规模	耗油量	油烟挥发	油烟产生量	去除效率	油烟排放量
	(人)	(t/a)	系数	(t/a)	(%)	(t/a)
餐饮	300	4.75	3%	0.14	85	0.021
食堂	1291	1.10	3%	0.03	85	0.005

(3)锅炉废气

本项目在医疗中心负一楼,设置 2 台燃气热水锅炉用于冬季供暖,单机额定制热量 2400kW,采用清洁能源天然气作为燃料,锅炉年工作 2160h,年天然气用气量约为 77.76×10 4 m 3 /a。天然气为清洁能源,燃烧产生的主要污染物为 SO₂、NO_x、烟尘,其中产生的 SO₂、和 NO_x参照《第一次全国污染源普查工业污染源产排污系数手册》中天燃气燃烧后主要污染物排放系数资料,每万 m 3 天然气产生烟气量为 136259.17m 3 ,SO₂ 0.02Skg(S=200)、NOx 18.71kg。烟尘产生量参照《环境保护实用统计手册》燃烧 1 万 m 3 的天然气,产生 2.4kg 的烟尘,项目产生的废气约为 1059.551 万 m 3 /a,锅炉燃烧废气经 1 根 43 米高排气筒高空排放 (F-Q1),排气筒高度应满足高于烟囱周围半径 200m 内最高建筑物 3m 以上。

根据南京市生态环境局苏环办[2019]62 号文件要求(附件 10),南京市新建燃气锅炉氮氧化物排放浓度应低于 50mg/m³,为减少本项目锅炉废气中氮氧化物的排放浓度,本项目采用江苏双良锅炉有限公司生产的 WNS 冷凝锅炉,该型锅炉通过降低燃烧烟气温度以减少氮氧化物的生成,并安装低氮燃烧器,通过控制炉内过剩空气系数和炉内燃烧温度来减少氮氧化物的生成,氮氧化物的去除效率能够达到 70%以上,本次以 70%计算。

经计算,本项目锅炉天然气燃烧后废气排放情况见表 5-7~8。

表 5-7 锅炉燃烧天然气产生污染物系数

污染物	烟尘	二氧化硫	氮氧化物
产生系数(kg/万 m³ 原料)	2.4	4	18.71

表 5-8 锅炉燃烧废气中产生污染物统计

						抖	排气筒参数		
污染 物	废气量 (万 m³/a)	产生浓度 (mg/m³)	产生速率 (kg/h)	产生量 (t/a)	运行 时间	内径 (m)	高度 (m	烟气出口温度	
						(111))	(℃)	
SO_2		29.41	0.144	0.311					
NOx	1059.551	40	0.196	0.423	2160	0.8	43	60	
烟尘		17.68	0.087	0.187					

(4) 污水处理站废气

本项目污水处理站位于项目西南侧,为地埋式,污水处理站会产生一定量的恶臭气体,主要成分为氨、硫化氢等。由于不同水质、不同处理工艺、不同工段、不同季节,产生臭气的物质和浓度也不同。故本报告仅根据项目设计污水处理工艺,对恶臭气体产生量作大致估算。根据《医疗废水处理方法比较》等相关技术资料,污水处理站大气污染物产生浓度为氨 1.98mg/m³,硫化氢 0.26mg/m³。本项目采取生物滤池除臭法处理污水处理站产生的恶臭气体,处理效率应大于 95%,按 95%计,处理后经由 15m (F-Q2) 排气筒高空排放。本项目废气排放情况见表 5-9。

表 5-9 本项目有组织废气产生及排放情况一览表

	広与具		产生状况	L	.У-\ TΠ +#:	+ 74		排放状况	Į.	工作	
污染物	废气量 m³/h	浓度	速率	产生量	治理措施	去除 效率	浓度	速率	排放量	时间	排放源
	111-/11	mg/m ³	kg/h	t/a	ル吐	双辛	mg/m ³	kg/h	t/a	h	
氨		1.98	1.98×10 ⁻²	0.173	生物滤	a = a /	0.099	9.9×10 ⁻⁴	0.0087	8760	H=15m
硫化氢	10000	0.26	2.6×10 ⁻³	0.023	池除臭	95%	0.023	2.3×10 ⁻⁵	0.0002	8760	d=0.4m T=25°C
SO ₂		29.41	0.144	0.311			29.41	0.144	0.311		H=43m
NOx	4896	40	0.196	0.423	/	/	40	0.196	0.423	2160	d=0.8m
烟尘		17.68	0.087	0.187			17.68	0.087	0.187		T=60°C

项目有组织排放量核算见表 5-10, 大气污染物年排放量核算见表 5-11。

表 5-10 大气污染物有组织排放量核算表

序号	排放口编号	污染物	核算排放浓度	核算排放速率	核算年排放量	
77.9	1117以口狮与	行来彻	μg/m³	kg/h	t/a	
	主要排放口					
/	/	/	/	/	/	
主要排放	女口合计		/		/	
		一般打	非放口			
1	F-Q1	SO_2	29410	0.144	0.311	
2	F-Q1	NOx 40000 0.196			0.423	
3	F-Q1	烟尘	17680	0.087	0.187	
4	F-Q2	氨	99	9.9×10 ⁻⁴	0.0087	
5	F-Q2	硫化氢	23	2.3×10 ⁻⁵	0.0002	
			SO_2		0.311	
			NOx		0.423	
一般排放	女口合计		0.187			
			0.0087			
			硫化氢		0.0002	

有组织排放总计					
	SO_2	0.311			
	NOx	0.423			
有组织排放总计	烟尘	0.187			
	氨	0.0087			
	硫化氢	0.0002			

表 5-11 大气污染物年排放量核算表

The state of the s	, , , , , , , , , , , , , , , , , , ,									
序号	污染物	年排放量 t/a								
1	SO_2	0.311								
2	NOx	0.423								
3	烟尘	0.187								
4	氨	0.0087								
5	硫化氢	0.0002								

为减轻建设项目污水处理站散发的异味对周围的环境影响,项目通过导排设施将 异味引出后经生物滤池除臭后外排,确保污水处理站周边空气中污染物浓度满足《医 疗机构水污染物排放标准》(GB18466-2005)表 3 中标准要求。当生物滤池除臭处理 装置失效时,将会出现事故排放,该项目非正常工况下污染源强见表 5-12。

表 5-12 非正常工况污染源强

种类	排气量		非正常状况	
1170	(m ³ /h)	排放浓度(mg/ m³)	排放速率(kg/h)	产生量 t/a
氨	10000	1.98	1.98×10 ⁻²	0.173
硫化氢	10000	0.26	2.6×10 ⁻³	0.023

(5) 地下车库尾气

本项目地下停车场共有 590 个汽车泊位,在汽车怠速(车速约 5 km/h)进出地下停车场时会产生一定的汽车尾气,其主要污染物是 N MHC(非甲烷总烃)、 $N \text{O}_2$ 和 C O。 经调查分析,地下车库停车场的汽车尾气排放量与汽车车型、汽车行驶车况、停车场的车流量及汽车在地下车库的运行时间均有关。

①排放系数

项目建成后,预计其进出的机动车主要为小型车,其污染物排放系数可参照《环境保护实用数据手册》中有关轿车的尾气排放系数,详见表 3.6-2。

②运行时间

运行时间包括汽车在地下车库内的怠速行驶时间和停车(或启动)时延误的时间。 一般汽车出入地下车库内的行驶速度要求不超过 5km/h,根据地面和地下一层的平面 布置图,项目地下车库内汽车的平均行车距离约 180m,为考虑汽车的运行、等候、泊车、发动、停车等因素,确定平均每辆车进入(或驶离)地下车库的时间为 2.5min,即每辆车在地下车库进出的总耗时约为 5min。

表 5-13 轿车(汽油)尾气排放系数(g/L 汽油)

污染物名称	污染物名称 CO		NO ₂	
排放系数	191	24.1	22.25	

③车流量

根据建设项目具体规划和建设规模,建设项目地下车库每个泊位平均周转次数按每天 1.6 次计,则项目地下车库平均每天进出的车辆数为 945 辆/d。

④排风量

该项目地下停车库面积约为 29719.59m², 地下车库平均高度约为 3.5m, 根据通风设计, 地下车库的通风为 6 次/h, 通过每栋楼的排风竖井至屋顶排放, 排风总量约为 62 万 m³/h。

⑤汽车尾气源强

据调查,车辆进出停车场一次耗油量约 0.20L/km,按车速 5km/h 计,可计算得 2.78×10-4L/s,则每辆汽车进出地下车库一次的大气污染物排放量可按以下公式计算:

g = fmt

式中: f: 大气污染物排放系数, g/L 汽油;

m: 进出车库平均耗油速度, L/s;

t: 在车库内的运行时间, s。

由上式计算可得,每辆汽车出入地下停车库一次耗油约 0.083L,每辆车进出地下车库产生的废气污染物 CO、NMHC、NO₂ 的量分别为 15.92g、2.00g、1.48g。根据估计的车流量,计算得到的地下车库尾气排放情况见表 5-14。

表 5-14 地下车库汽车尾气排放情况一览表

污染物名	· 陈	CO	NMHC	NO ₂					
污染物排放量	t/a	5.49	0.69	0.51					
行架初採以里	kg/h	0.6	0.078	0.058					
排放浓度	mg/Nm³	0.96	0.12	0.093					

3、噪声

本项目营运期噪声主要来源于水泵运转噪声、油烟风机、冷却塔、冷冻机组以及

污水处理站通风风机、锅炉房等设备运行噪声,同时还有各类商业用房活动噪声和汽车出入地下车库的交通噪声。本项目的噪声污染源列于表 5-15。

表 5-15 本项目主要设备及其噪声源强 单位: dB(A)

设备名称	噪声值范围	位置	排放规律	
水泵	80~85	地下室	间隙	
风机	75	屋顶	间隙	
冷却塔	80~85	屋面	间隙	
冷冻机组	75~80	地下室	间隙	
锅炉房	80~85	地下室	间隙	

4、固体废物

本项目固废主要为医疗废物、办公生活垃圾、餐饮垃圾、隔油池废油脂、污水处理站污泥。

(1) 医疗废物

根据第一次全国污染源普查城镇生活源产污系数手册,医院医疗废物产生系数为 0.65kg/(床/天),本项目病床数为 794 张,则住院病人产生的医疗废物为 188.38t/a;门诊病人医疗废物产生系数为 0.5kg/(人/天),本项目建成后门诊量约为 300 人次/天,门诊病人产生医疗废物为 54.75t/a,则危险废物产生量共计为 243.13t/a;

(2) 生活垃圾

本项目建成后,员工约 300 人,办公生活垃圾产生量按 1.0kg/(p·d)计,则每年办公生活垃圾产生量为 109.5t/a;每张病床每天产生生活垃圾量按 2kg 计,则该项目749 张病床产生生活垃圾量为 546.77t/a;所以该项目生活垃圾产生量共计约为656.27t/a;

(3) 餐厨垃圾

本项目建成后,新建的食堂每天就餐人数约 1300 人,餐饮垃圾产生量按 1kg/p.d 计,则餐饮垃圾产生量为 474.5/a;商业用房商业垃圾按照 0.1kg/m².天计算,建筑面积 1373.59m²,餐厨垃圾产生量为 50.14t/a;则本项目餐厨垃圾产生量为 524.64t/a;

(4) 隔油池废油脂

本项目建成后,食堂及餐饮废水经隔油池处理会产生污泥,隔油池污泥其中含有动植物油和脂肪类污染物,本项目废油脂产生量为5.7t/a;

(5) 污水处理站污泥

本项目建成后,污水处理站产生的污泥年产量约为80吨。

本项目的固废鉴别、分析及处置情况列于表 5-16。

表 5-16 建设项目固体废物鉴别表(单位: t/a)

					预测产		种类判断	*
序号	废物名称	产生工序	形态	主要成分	生量	固体废 物	副产品	判定依据
1	医疗废物	医疗过程	固 态、 液态	塑料、化 学品、有 机物	243.13	V	/	使用中被 污染的物 质或物品
2	生活垃圾	办公、生 活	固态	纸张、有 机物等	656.27	√	/	消费过程 中产生的
3	餐厨垃圾	厨房和餐 厅	半固 态	食物残渣	524.64	V	/	残余物
4	废油脂	食堂厨房	半固 态	动植物油 脂肪类	5.7	V	/	污染控制 设施产生
5	污水处理 污泥	污水站	半固 态	污泥	80	V	/	的垃圾、残 余物、污泥

表 5-17 固废分析结果汇总表

序号	固废名称	属性(危险 废物、一般 工业固体 废物或待 鉴别)	产生工序	形态	主要成分	危险 特性	废物 类别	废物 代码	估算产 生量 (吨/ 年)
1	生活垃圾		办公、 生活	固态	纸张、有 机物等	/	/	/	656.27
2	餐厨垃圾	一般固体 废物	厨房 和餐 厅	半固态	食物残 渣	/	/	/	524.64
3	废油脂		食堂 厨房	半固态	动植物 油脂肪 类	/	/	/	5.7
4	医疗废物	危险废物	医疗过程	固态	塑料、化 学品、有 机物	In, T	/	831-001-01 831-002-01 831-003-01 831-004-01 831-005-01	243.13
5	污水处理 污泥		污水 处理 站	半固态	有机物	In		831-001-01	80

表 5-18 建设项目固体废物处置情况一览表(单位: t/a)

序号	来源	编号	主要成分	产生量	外排量	处理处置方法	
1	生活垃圾		纸张、有机物等	656.27	0	环卫部门收集	
2	餐厨垃圾	-	-	食物残渣	524.64	0	小上部11収朱
3	废油脂		动植物油脂肪类	5.7	0	需委托有资质	

4	医疗废物	LIWO1	塑料、化学品、有机 物	243.13	0	单位专门处置
5	污水处理污泥	HW01	污泥	80	0	

六、项目主要污染物产生及预计排放情况

大气污染物 (素性) (大白)	内容	排放源	污染物	产生量	产生速率	排放量	排放浓度	排放速率	排放去向			
大气 一般 一般 一般 固度 上 上 上 上 上 上 上 上 上	类型	(编号)	名称	(t/a)	(kg/h)	(t/a)	(mg/m ³)	(kg/h)				
大大 大大 大大 大大 大大 大大 大大 大			氨 	0.173	1.98×10 ⁻²	0.0087	0.099	9.9×10 ⁻⁴				
NOx	大	站(F-Q2)	硫化氢	0.023	2.6×10 ⁻³	0.0002	0.023	2.3×10 ⁻⁵				
NOx	气污	食堂、餐饮	油烟	5.85	/	0.026	/ /		大与环境			
NOx	染物	- 	SO ₂	0.311	0.144	0.311	29.41	0.144				
類性	123		NOx	0.423	0.196	0.423	40	0.196				
接管電 (ta) 接管電 (ta) 接管電 (mg/L) 排放去同 接管電 (ta) 接管電 (mg/L)		(1 Q1)	烟尘	0.187	0.087	0.187	17.68	0.087				
大大 大 大 大 大 大 大 大 大		污染物	 勿名称			接管量(t/a)	接管浓度	(mg/L)	排放去向			
SS 40.593 40.593 14.946 85.7 接管桥北污染物 混合废水 氣氣 6.497 6.497 37.2 水处理厂处理 上颌 0.851 0.851 0.851 4.8 力植物油 2.148 2.148 0.537 3.0 上颌 数 MPN MPN			废水量		/	174993.4		/				
送隣	حاد		COD	71.936	71.936	50.563	2	290				
送隣	小污 洗		SS	40.593	40.593	14.946	8	35.7	接管桥北污水处理厂处理			
点條 0.851 0.851 0.851 4.8 动植物油 2.148 2.148 0.537 3.0 養大肠菌群 2.3×10 ¹⁹ 2.3×10 ¹⁹ 7.1×10 ¹³ <5000	物	混合废水	氨氮	6.497	6.497	6.497	3	7.2				
大			总磷	0.851	0.851	0.851		4.8				
数 MPN MPN MPN MPN/L 方染物名称 产生量 (t/a) 处理处置量 (s/c) 外排量 (t/a) 备注 上活垃圾 656.27 656.27 0 环卫清运 厨余垃圾 523.54 523.54 0 委托专门单位处置 废油脂 5.7 5.7 0 委托有资质单位处置 医疗废物 243.13 243.13 0 委托有资质单位处置 产污水处理站 污泥 80 80 0 0 董 本项目运营期设备噪声主要来自污水处理站的水泵、风机、冷却塔、制冷机组、锅炉房等设备、噪声。建设单位采取低噪声设备、建筑物隔声、安装基础减振、隔声罩等措施后其厂界噪声可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 2 类标准限制要求,对周围环境影响较小。 其他 /			动植物油	2.148	2.148	0.537		3.0				
			粪大肠菌群	2.3×10 ¹⁹	2.3×10 ¹⁹	7.1×10 ¹³	<	5000				
			数									
固体度物 生活垃圾 656.27 656.27 / 0 环卫清运 厨余垃圾 523.54 523.54 / 0 委托专门度油脂 5.7 5.7 / 0 单位处置 医疗废物 243.13 243.13 / 0 委托有资质单位处置 *** *** ** *** *** *** ** *** *** ***		污染物	勿 名称						备注			
一			生活垃圾				<u> </u>		环卫清运			
废物 废油脂 5.7 5.7 / 0 单位处置 医疗废物 243.13 243.13 / 0 委托有资质单位处置 污水处理站污泥 80 80 / 0 万单位处置 本项目运营期设备噪声主要来自污水处理站的水泵、风机、冷却塔、制冷机组、锅炉房等设备噪声。建设单位采取低噪声设备、建筑物隔声、安装基础减振、隔声罩等措施后其厂界噪声可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 2 类标准限制要求,对周围环境影响较小。 其他 /		1	厨余垃圾	523.54	523.54	/		0	季托专门			
医疗废物 243.13 243.13 / 0 委托有资 危险废物 污水处理站 80 80 / 0 置 本项目运营期设备噪声主要来自污水处理站的水泵、风机、冷却塔、制冷机组、锅炉房等设备 噪声。建设单位采取低噪声设备、建筑物隔声、安装基础减振、隔声罩等措施后其厂界噪声可 满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 2 类标准限制要求,对周围环境影响较小。	废	四次	废油脂	5.7	5.7	/		0	_			
本项目运营期设备噪声主要来自污水处理站的水泵、风机、冷却塔、制冷机组、锅炉房等设备噪声。建设单位采取低噪声设备、建筑物隔声、安装基础减振、隔声罩等措施后其厂界噪声可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的2类标准限制要求,对周围环境影响较小。	170		医疗废物	243.13	243.13	/		0	委托有资			
噪 噪声。建设单位采取低噪声设备、建筑物隔声、安装基础减振、隔声罩等措施后其厂界噪声可 满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的2类标准限制要求,对周围环 境影响较小。		危险废物		80	80	/		0				
声 满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 2 类标准限制要求,对周围环境影响较小。 其 他		本项目运营	 京期设备噪声	主要来自	污水处理站的	的水泵、风机	、冷却塔、特	制冷机组、锅				
境影响较小。 其 他	噪	噪 噪声。建设单位采取低噪声设备、建筑物隔声、安装基础减振、隔声罩等措施后其厂界噪声可										
他 '	声											
		/										
		∟ 杰影响.施□	一期间场州开				与	雨水冲刷造点	—————————————————————————————————————			

七、环境影响分析

施工期环境影响分析:

施工期对环境的影响主要表现为各种施工活动对环境的影响,在施工期间,应采取相应的环保措施,使这些影响得以控制或减小。施工期环境影响为短期影响,随着施工期结束而结束。

1、水环境影响分析

本项目施工期废水主要是施工人员产生的生活污水和施工生产废水。施工生产废水 经沉淀池处理后循环利用不外排;施工生活污水依托南京国际健康城现有公共厕所,进 入市政污水管网,排入桥北污水处理厂进行处理。通过采取上述措施,项目施工期废水 对区域地表水环境影响较小。

2、大气环境影响分析

本项目施工期废气主要为施工扬尘、施工过程的燃油废气、装修废气。

(1) 施工扬尘影响

①施工工地道路扬尘

运输车辆行驶产生的扬尘影响最大,时间较长,影响程度因施工场地内路面破坏、泥土裸露而加重,一般扬尘量与汽车速度、汽车总量、道路表面积积尘量成比例关系。在自然风作用下,道路产生的扬尘一般影响范围在 100m 以内。为了尽量抑制扬尘产生,需定时洒水和清扫。根据相关资料表明,对车辆行驶的路面实施只洒水不清扫,可使扬尘量减少 70%~80%,若清扫后洒水,抑尘效率能达 90%以上,其抑尘效果是显而易见的。

②堆场扬尘

据相关资料表明,当堆场表面含水率大于 6%,扬尘对周围环境的影响将大大减少, 因此,对堆场进行定期洒水,可有效抑尘。此外,对易产生扬尘的物资,不要露天堆放, 采取遮挡等措施,遇到大风天气应避免作业,以减少粉尘对周边环境的影响。

(2) 施工过程的燃油废气影响

项目施工车辆、挖掘机、装载机、推土机等燃油产生的 CO、NOx、THC 等污染物会对周边大气环境有一定的影响。由于这种污染源较分散,间断性排放,且排放量较小,因此影响是短期和局部的,施工期加强设备的维护,燃油废气对项目周围环境影响较小。

(3) 装修废气影响

本项目装修过程使用的涂料应为水性环保涂料,不涉及有机溶剂,产生的有机废气 较少,对周边环境影响较小。

为使建设项目施工期间对周围大气环境影响降到最低程度,施工单位应按照《南京市大气污染防治条例》的第四章防治扬尘污染内容的要求,并采取以下防治措施:

- 1)建设单位应当在与施工单位签订的施工承发包合同中明确施工单位防治扬尘污染的责任,并将防治扬尘污染的费用列入工程概算。施工单位应当按照规定,制定扬尘污染防治方案,并报施工所在区县环保部门备案。
- 2)施工工地四周应当设置不低于二米的硬质密闭围挡,施工作业层外侧必须使用密目安全网进行封闭:
- 3)施工工地应当硬化并保持清洁,出口处必须设置冲洗设施以及配套的排水、泥浆沉淀设施,运输车辆驶出施工现场前应当将槽帮和车轮冲洗干净;
- 4)施工工地内堆放水泥、灰土、砂石等易产生扬尘污染物料的,应当遮盖或者在库房内存放,建筑垃圾、工程渣土应当在四十八小时内完成清运,不能按时完成清运的,应当在施工工地内临时堆放并采取围挡、遮盖等防尘措施,不得在施工工地外堆放建筑垃圾和工程渣土;
- 5) 在建筑物、构筑物上运送散装物料、建筑垃圾和渣土的,应当采用密闭方式清运,禁止凌空抛撒;
 - 6) 不得在施工现场搅拌混凝土;
- 7)闲置三个月以上的施工工地,应当对其裸露泥地进行临时绿化或者采用铺装等防尘措施;
- 8) 工程项目竣工后,应当平整施工工地,并清除积土、堆物,不得使用空气压缩机清理车辆、设备和物料的尘埃;
- 9) 主城、新市区和新城范围内运输易产生扬尘污染物料时,应当采用密闭化车辆运输;
- 10)加强对车辆机械密闭装置的维护,确保正常使用,运输途中的物料不得泄漏、 散落或者飞扬。

综上所述,项目施工期将会对项目所在地环境空气质量造成一定影响,但只要施工

单位严格遵守相关规定并采取上述防治措施,可有效降低其不良影响,且随着施工期的结束影响也随之结束。

3、声环境影响分析

施工期间噪声主要来源于施工场地各类机械设备噪声、运输车辆的交通噪声。

(1) 施工期交通噪声影响分析

施工期交通噪声的影响主要是运输车辆对沿线目标产生的影响,项目在选择运输路线时应尽量避开交通拥挤的主干道,途经声环境敏感目标时,采取限制车速、严禁鸣笛措施减少对敏感目标产生的噪声影响。

(2) 机械设备噪声影响分析

施工期的机械设备主要有推土机、挖土机、气锤等,这些机械噪声一般在 85-115 dB(A)之间。由于设备交互作业,这些设备在场地内的位置、使用率有较大变化,很难计算其确切的施工场界噪声。

主要施工设备噪声的距离衰减情况见表 7-1。

☆ □	设备名称		距离(m)								
序号		5	20	80	100	150	200	250			
1	推土机	86	74	62	60	57	54	50			
2	挖掘机	81	69	57	55	51					
3	吊机、装载机	76	64	53	50						
4	钻机	86	74	62	60	57	54	50			

表 7-1 主要施工机械设备噪声衰减距离

根据经验和上表衰减效果分析可知,若不采取相应的隔声降噪措施,施工机械产生的噪声一般在 20m 以外才能满足《建筑施工场界环境噪声排放标准》(GB12523-2011)的昼间标准,夜间要求较严,高噪声设备需在距离 250m 以外,其设备噪声才能满足《建筑施工场界环境噪声排放标准》(GB12523-2011)的夜间标准。本项目距离最近敏感点为 30m,项目施工噪声会对周边环境造成一定影响。

为减轻施工噪声对周边环境的影响,施工时应采取如下措施:

- 1) 合理安排施工时间,禁止夜间施工,如因特殊情况确需在夜间施工时,必须办理夜间施工手续并公告周围群众;
 - 2) 施工场地合理布局,在靠近敏感点侧施工时,设置施工围挡等临时隔声措施;
 - 3)加强设备的维护,保障施工机械设备在良好的状态下运行;

综上所述,施工噪声会对周围环境造成一定影响,但通过采取上述措施,可有效降低不良影响,且施工期噪声对环境的影响是短期的,随着施工结束其影响将也随之消失。

4、固体废弃物环境影响分析

项目施工期固体废弃物主要分为施工时挖掘的弃土、建筑垃圾以及施工人员产生的生活垃圾。

建筑垃圾、弃土如果堆存处置不当,将占用道路并且引发二次扬尘,施工期生活垃圾若处理不当,不仅影响景观,而且散发的恶臭会对周围环境造成不良影响。为减轻不良环境影响,本项目采取如下措施:

(1) 施工弃土

本项目弃方应委托市政运输及处理。

(2) 建筑垃圾

对施工期产生的废弃建筑材料和废包装材料加强收集和管理,将建筑垃圾和能回收的废材料、废包装袋分类回收,而后将废材料、废包装袋及时出售给废品回收公司处理;对不能回收的建筑垃圾,如混凝土废料、含砖、石、砂的杂土等应集中堆放,定时清运到指定地点,严禁随意倾倒、填埋,造成二次污染。运输时应选择对城市环境影响最小的运输路线,用运输车集中运输,严禁废渣进入周边河体。

(3) 生活垃圾

施工人员产生的生活垃圾可在驻地设置临时垃圾桶,集中收集后委托环卫部门及时清运。

综上所述,通过采取以上措施,施工期的固体废弃物可得到有效处置,不会造成二次污染。

5、水土流失影响分析

本工程建设在施工期间应严格按照要求施工,同时做好建设后的生态保护和恢复, 尤其是对环境保护目标的保护,从而减少施工期间的水土流失;项目投入运营后,由于 排水设施、护坡工程的完善以及植物的绿化美化,工程区域的水土流失将消失,因此, 本项目建设期水土流失加重是暂时的。

本项目应采取如下防止水土流失措施:

1) 科学布置施工场地, 合理选择施工工期;

- 2) 在场地周围设置排水沟,并在排水沟出口处设置沉砂池,使汇水在沉砂池中流速减缓、沉淀泥沙。
- 3) 在堆放土石时,把易产生水土流失的土料堆放在场地中间,开采的块石堆放在 其周围,起临时拦挡作用,并在堆放场地周围设置排水沟及沉淀池。
 - 4)修建挡墙、护坡和混凝土路面等有效地防治水土流失的基础设施。

营运期环境影响分析:

- 1、大气环境影响分析
- 1.1 废气污染源

本项目营运过程中产生的废气主要为天然气燃烧废气、食堂及餐饮油烟废气、锅炉燃烧废气、污水处理厂恶臭、地下车库废气。

(1) 天然气燃烧废气

本项目食堂及餐饮燃烧天然气属于清洁能源,可直接排放。

(2)油烟废气

本项目食堂油烟及餐饮油烟废气经油烟净化器(去除效率≥85%)处理后,通过专用烟道引至屋顶达标排放,油烟排放口可避开周围敏感点,对周边大气影响较小。

(3) 锅炉废气

本项目锅炉房位于医疗中心负一层,锅炉采用天然气清洁能源天然气作为燃料,锅炉燃烧废气经 1 根 43 米高排气筒高空排放(F-Q1),排气筒高度应满足高于烟囱周围半径 200m 内最高建筑物 3m 以上,烟气排放口尽量避开附近环境敏感点,锅炉废气中污染物 SO2、烟尘排放满足《锅炉大气污染物排放标准》(GB13271-2014)表 3 燃气锅炉大气污染物特别限值标准,NOx 排放浓度满足《关于进一步明确燃气锅炉低氮改造相关要求的通知》中氮氧化物排放浓度应低于 50mg/m³ 的要求,对周围的大气环境影响较小。

(4) 污水处理站废气

本项目污水处理站拟采用地埋式,污水处理设施加盖密闭,通过集气管道收集恶臭气体,并经过生物滤池除臭处理后通过 1 根 15m(F-Q2)高排气筒高空排放。污水处理设施为全封闭状态,臭气收集效率高,基本可以避免无组织废气排放。氨气和硫化氢有组织排放浓度分别为 0.099mg/m³, 0.023mg/m³, 能够满足《医疗机构水污染物排放标准》(GB18466-2005)中表 3 标准,对周边环境影响较小。

①环境影响分析

本次评价利用《环境影响评价技术导则 大气环境》(HJ2.2-2018)推荐的估算模式 AERSCREEN,对项目正常情况下废气主要污染因子的最大占标率进行估算,其排放参 数见表 7-2。

表 7-2 项目营运期正常情况点源调查参数

编	to the	排气筒		排气	排气	排气	烟气	烟气	年排	排放	评价因子
编号	名称	X	Y	部海 拔高 度	筒高 度	筒内 径	流速	出口 温度	放小 时数	工况	源强
		m	m	m	m	m	m/s	K	h		kg/h
1	污水处理站 废气	0	0	0	15	0.4	23.72	313	8760	连续	氨 9.9×10 ⁻⁴ 硫化氢 2.3×10 ⁻⁵

估算模式所用参数见表 7-3。

表 7-3 估算模型参数表

农 /-3 旧异侯至多奴农							
	参数	取值					
城市农村/	城市/农村	农村					
选项	人口数(城市人口数)	43 万					
	最高环境温度	43°C					
	最低环境温度	-12.4°C					
	土地利用类型	医疗					
	区域湿度条件	1 (中等湿度)					
是否考 虑地形	考虑地形	否					
是否考虑海岸 线熏烟	考虑海岸线熏烟	否					

本项目污染源的正常排放的污染物的 Pmax 和 D10%预测结果如下:

表 7-4 大气污染物占标率估算表

污染源名称	评价因子	评价标准 (mg/m³)	C _{max} (mg/m ³)	P _{max} (%)	D _{10%} (m)
污水处理站	氨	0.20	1.33E-04	0.07	/
(F-Q2)	硫化氢	0.01	3.05E-05	0.03	/

表 7-5 F-Q2 点源最大 Pmax 和 D10%估算结果一览表

污染物	氨		硫化氢		
距源中心下风向距离 D (m)	下风向浓度(mg/m³) 占标率(%)		下风向浓度(mg/m³)	占标率(%)	
10	8.472E-22	0.00	1.948E-23	0.00	
100 1.208E-4		0.06	2.776E-6	0.03	
100	1.208E-4	0.06	2.776E-6	0.03	
165	1.327E-4	0.07	3.05E-6	0.03	
200	1.255E-4	0.06	2.885E-6	0.03	

300	1.175E-4	0.06	2.702E-6	0.03
400	1.016E-4	0.05	2.335E-6	0.02
500	9.697E-5	0.05	2.229E-6	0.02
600	8.71E-5	0.04	2.002E-6	0.02
800	8.769E-5	0.04	2.016E-6	0.02
900	8.507E-5	0.04	1.956E-6	0.02
1000	8.074E-5	0.04	1.856E-6	0.02
1100	7.574E-5	0.04	1.741E-6	0.02
1200	7.057E-5	0.04	1.509E-6	0.02
1300	6.566E-5	0.03	1.404E-6	0.02
1400	6.109E-5	0.03	1.308E-6	0.01
1500	5.69E-5	0.03	1.22E-6	0.01

综合分析,本项目 P_{max} 值为 0.07%,根据《环境影响评价技术导则 大气环境》 (HJ2.2-2018)分级判据,确定本项目大气环境影响评价工作等级为三级。由大气污染物预测结果可见,建设项目投产后各污染物排放的最大占标率均<1%;各污染物下风向最大浓度均小于标准要求,对周围大气环境影响较小,不会改变区域环境空气质量等级,可接受。

②大气环境防护距离

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),对于项目厂界浓度满足大气污染物厂界浓度限值,但厂界外大气污染物短期浓度贡献值超过环境质量浓度限值的,可以自厂界向外设置一定范围的大气环境防护区域,以确保大气环境防护区域外的污染物贡献浓度满足环境质量标准。

根据预测结果,建设项目厂界外大气污染物浓度未超过环境质量浓度限值,不需设置大气环境防护距离。

综上所述,本项目营运期排放的废气对周边大气环境影响较小。

本项目大气环境影响评价自查表见7-6。

表7-6 建设项目大气环境影响评价自查表

工作内容		自査项目				
评价等 评价等级		一级		二级	三级≎	
级与范 围	评价范围 边长=50km			边长=5~50km	边长=5km	
评价因 子	SO ₂ +NOx 排放量	≥2000t/a		500~2000t/a	<500t/a❖	

	评价因子		基本污染物(SO ₂ 、NO ₂ 、PM ₁₀ 、PM _{2.5} 、CO、					欠PM2.5□
)=: /A !=	, , , , , , , , , , , , , , , , , , ,	О	3) 其他》	亏染物	(氨、硫	(化氢)	不包括二	次PM2.5章
评价标 准	评价标准	国家标准≎		地	力方标准	附录D≎	其他标准	
	评价功能区	-	一类区		_	二类区♥	一类区	和二类区
	评价基准年					(2018) 年		
现状评 价	环境空气质 量现状调查 数据来源	长期例	刘行监测 数	女据	主管部门发布的数据❖		现状剂	·充检测
	现状评价			达标	区		不达	标区❖
污染源调查	调查内容	本项目	正常排放 非正常排 有污染源	放源	拟替	代的污染源	其他在建、拟 建项目污染 源	区域污染源
	预测模型	AERMO D _□	ADMS□	AUS	ΓAL2000	EDMS/AEDT	CALPUFF	网格模 型□ 他
	预测范围	边长	≲≥50km⊏]	边长	5~50km□	边长-	=5km□
	预测因子		预测因]子 (1	NH ₃ 、H ₂ S	\mathbf{S})		欠PM2.5□ 次PM2.5♀
大	正常排放短 期浓度贡献 值	C 本项目最大占标率≤100%□				最大占标		
气 环境 影	正常排放年	一类区 C 本			本项目最大占标率≤10%□			最大占标
响 预测 与	均浓度贡献 值	二类区 С本		项目最大占标率≤30%□		C 本项目最大占标 率>30%□		
评价	非正常1h 浓度贡献值	非正常持	续时长(/) h		正常占标率 ≦100%□	C 非正常占	标率>100%□
	保证率日平 均浓度和年 平均浓度叠 加值	C 叠加达标□			C 叠加	不达标□		
	区域环境质 量的整体变 化情况			k≤-2	0%□		k>-2	20%□
环 境	污染源监测	监测国	因子: (/	′)		R废气监测 R废气监测	无监	至测章
监 测	环境质量监 测	监测因	子: (/	′)	监测点	【位数(/)	无监	至测 🌣
评价	环境影响		可以打	妾受 🕻	>		不可以接受	
结论	大气环境防 护距离	距(/) 厂界最远(/)			m			

污染源年排 放量	颗粒物:(0.187)t/a	VOCs:(/)t/a	苯乙烯:(/)t/a
	注:"□",填"√";"()"为内容填写项	

(5) 地下车库尾气

本项目地下车库的车道是汽车尾气排放较集中的地方,采用合理布置通道、车位、增加车库入口绿化、加强管理等手段来减少塞车,尽量减少汽车低速进出车库所排的氮氧化物、一氧化碳和碳氢化合物等污染物,通过机械强制通风的方式使停车场中机动车尾气迅速通过排风井排出,同时加强场内空气流通,车库每小时换气的次数不少于6次,在车辆进出较频繁时可适当增加换气次数,这样可减轻车库内环境的污染。

本项目设置连通式地下停车库,车库排气口下沿距地面 2.5m,高于人群呼吸带,以减少对环境和行人的影响,排气筒排气速度设计为 2.5m/s,有利于车库排气与大气的混合,迅速被稀释,不会对周围大气环境造成影响。

车库排风系统风量要足够大,要使车库出口保持一定的负压,加强对送排风机的定期检修和维护,确保地下车库排风换气系统的正常运行,同时地下车库出入口周围应加强绿化,在车库通道顶棚和墙体上种植攀援和藤本植物,使之成为"绿色出入口",尾气排风口配合周边景观进行设计。对于分布在小区内各处的固定室外停车位,由于位于室外,空气流动畅通,污染物扩散迅速,不会对周围大气环境造成影响。

2.水环境影响分析

该项目工程分析中对不同废水进行了分类统计,主要有医疗废水、办公生活污水和食堂及餐饮含油废水等。医疗废水是指门诊、病房、手术室等处排出的污水。食堂及餐饮含油废水经隔油池处理,医疗废水经污水处理站处理后达《医疗机构水污染物排放标准》(GB18466-2005)表 2 预处理标准后,汇同生活污水同时满足桥北污水处理厂接管标准,接入市政污水管网,送至桥北污水处理厂集中处理,尾水处理达《城镇污水处理厂污染物排放标准》(GB18918-2002)表 1 中一级 A 级标准,尾水排入长江。

(1) 污水处理站处置可行性分析

建设项目需处理的医疗废水污水量约为 142481.4t/a, 平均约为 390.36t/d, 建设项目 拟建一座处理容量为 440t/d 的污水处理站,能满足该项目污水处理的需求。

本项目污水处理站采取"A/O+沉淀+消毒"工艺:

①格栅井

医疗废水各部分排水虽都设有化粪池,考虑到仍会有少量较大杂物流入污水处理站,在格栅井设置机械格栅机一套,确保后续工艺的正常运行,减少人工劳动强度。

②调节池

污水自格栅井流入调节池,水质与水量在这里得到很好调节、均化。

③缺氧池

- a、医疗污水中洗涤水较多,其中含有较多的表面活性剂,本单元对其有较好的分解作用,以防止后续好氧单元产生大量泡沫而影响运行。
- b、设置缺氧池的目的是在缺氧条件下水解污泥和污水中的有机物并将回流水反硝 化除氮,便于下阶段的好氧处理的生物降解,缩短好氧时间。
- c、污水由调节池潜污泵提升进入缺氧池,在缺氧池内设有曝气装置,主要用于回流污泥与前级污水的混合搅拌,沉淀池内的污泥按 66.7%的回流比由污泥回流泵定期定量送入缺氧池。
- d、因为医疗污水中有机氮含量高,在进行生物降解时会以氨氮的形式出现,所以排入水中的氨氮的指标会升高,而氨氮也是一个污染控制指标,因此在好氧生化池前加缺氧池,缺氧池可利用回流的污泥中带入的硝酸盐和进水中的有机物碳源进行反硝化,使进水中的 NO^2 -、 NO^3 -还原成 N_2 达到脱氮作用,在去除有机物的同时降解氨氮值。

④生物接触氧化池

缺氧池出水自流到生物接触氧化池,本单元采用推流式和完全混合式相结合的流态,池内设置由高效组合填料及微孔曝气装置组成的生化装置,在本处理工艺中有以下特点:

- a、该法结合了生物膜法与活性污泥法的优点,有较高的生物固体浓度与较高的有机负荷,使本单元具有很强的调节功能,可有效消除季节性变化对生化单元稳定运行的不利影响,同时保证了本单元有很高的去除率和很强的抗冲击能力。
- b、本单元中的微生物以固着型生物膜为主,使泥龄较长的硝化细菌得以大量生长, 对水中氨氮具有一定的硝化效果,可保证出水氨氮维持在较低的浓度。
 - c、无污泥膨胀问题,运行稳定可靠,管理简单,易实现全自运行。

⑤沉淀池

生物接触氧化池出水溢流入沉淀池,进行固液分离,沉淀污泥用泵回流入缺氧池,

并定期将剩余污泥泵入污泥池。

⑥消毒池

沉淀池出水自流入消毒池,消毒池采用折流式接触消毒池,并在进水管道上装有管道混合器使污水与消毒剂充分接触反应。消毒剂选用安全、高效、杀菌力强的次氯酸钠 (NaOCI),利用它的强氧化性杀灭污水中的细菌、病原体。污水处理工艺流程见图 7-1。

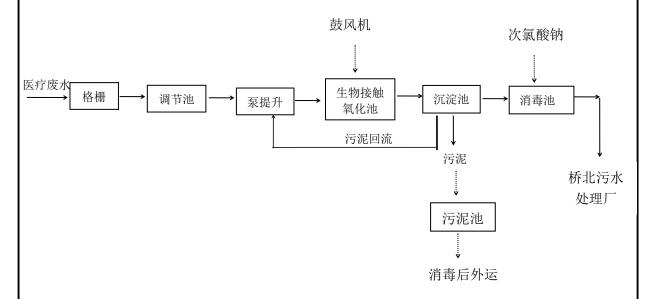


图 7-1 污水处理工艺流程

(2) 废水接管可行性分析

本项目医疗废水经污水处理站处理后达《医疗机构水污染物排放标准》(GB18466-2005)表 2 预处理标准,食堂及餐饮废水经隔油池预处理后汇同生活污水,达到桥北污水处理厂接管标准后排入桥北污水处理厂集中处理。本项目在桥北污水处理厂已建管网服务范围内(见附图 5),通过管网接入污水处理厂是可行的。桥北污水处理厂污水处理设施规模为 20 万 m³/d,本项目废水最大接管量为 478t/d(污水年产生量为 174993.4t/a),最大接管量占该污水处理厂处理能力的 0.239%,对其正常处理几乎没有冲击影响,桥北污水处理厂完全可以接纳处理。桥北污水处理厂采用"预处理+改良式 A²O+辐流沉淀池+高效混凝沉淀池+深床滤池+次氯酸钠消毒"处理工艺,废水水质达《城镇污水处理厂污染物排放标准》(GB18918-2002)表 1 中一级 A 标准后,尾水排入长江,对周围水环境影响较小。

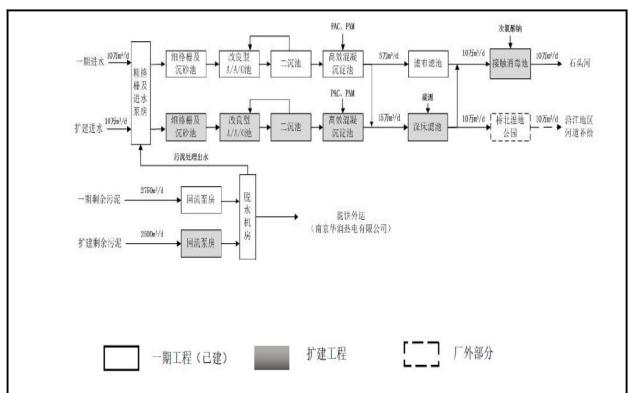


图 7-2 桥北污水处理厂扩建后污水处理工艺流程

(3) 项目事故废水防范措施

为了最大程度降低建设项目事故发生时对水环境的影响,项目拟建设事故池。项目的事故池包括消防废水和污水处理站事故废水的收集。事故消防废水用量按 20L/s 计,收集 1 小时,则事故消防废水为 72m³/次;建设项目废水处理装置发生故障时,所有废水应收集(收集时间大于 12 小时),待污水处理站运转正常时再进行处理。建设项目将设置 100m³ 的事故池,满足该项目污水装置出现事故或消防事故时不向外环境排水的要求。

本项目地表水环境影响评价自查表见表 7-8。

表 7-8 地表水环境影响评价自查表

	工作内容		自查项目						
		影响类型	水污染影响型☑;水文要素影响型□						
			饮用水水源保护区□;饮用水取水口□;涉л	k的自然保护区□; 涉水的风景名胜					
	影	水环境保	区□; 重要湿地□; 重点保护与珍稀水生生物	勿的栖息地□;重要水生生物的自然 ┃					
- 1	彩响	护目标	产卵场及索饵场、越冬场和洄游通道口;天然渔场等渔业水体口;水产种质资						
- 1	识		源保护区□; 其他☑						
- 1	い 别	影响途径	水污染影响型	水文要素影响型					
	<i>フ</i> リ	影响还位	直接排放□;间接排放☑;其他□	水温□;径流□;水域面积□					
		影响因子	持久性污染物□; 有毒有害污染物□; 非持	水温□;水位(水深)□;流速□;					
		彩响囚丁	久性污染物□;	流量□; 其他□					

		pH 值□;热污染□;富营				
) =	5 /	水污染影响		水文學	要素影响型	
评价等级		一级□;二级□;三级 A	一级□;二级□;三级 A□;三级 B☑		二级□;三级□	
		调查项目		数据来源		
	区域污染	コカ_ <i>大</i> カ_ 拟み_	地林华孙海边	排污许可证□;	环评□;环保验收□;	
	源	│已建□;在建□;拟建□;│ │ 其他□	拟替代的污染 源□	既有实测□; ξ	见场监测口;入河排	
		共他口	7/37□	放口数	据□;其他□	
	受影响水	调查时期		数	据来源	
	体水环境	丰水期□; 平水期□; 枯水	ヾ期□;冰封期□	生态环境保护	主管部门口;补充监	
现	质量	春季□; 夏季□; 秋季	□; 冬季□	测□	; 其他□	
	区域水资					
调调	源开发利	未开发口; ラ	开发量 40%以下□	; 开发量 40%以	J.上ロ	
查	用状况					
	水文情势	调查时期		数	据来源	
	调查	丰水期□;平水期□;枯水				
	77.5	春季□; 夏季□; 秋季			其他□	
	补充监测	监测时期		因子	监测断面或点位	
		丰水期□; 平水期□; 枯水			监测断面或点位	
		期□; 冰封期□春季□; 夏季	()	个数	
	\= # # E	□; 秋季□; 冬季□	() 个			
	评价范围	河流:长度()				
	评价因子	(pH、COD、BOD₅、氨氮、SS、总磷、粪大肠菌群) 河流、湖库、河口:I类□;II类□;IV类□;IV类□;V类□				
	44 = 1 A) = c					
	评价标准		等一类口;第二类[科 左 次 人		- 四尖□	
		**	见划年评价标准(□; 平水期□; 枯;			
	评价时期		J			
		水环境功能区或水功能	季□; 夏季□; 秋 **▽ 近岸海城#			
				''况为化区小灰		
现		水环境控制单元或断		法标□ • 不法		
状						
评		水环境保护目标质量>	状况: 达标□: 不	达标□		
价		对照断面、控制断面等				
	>= /A / L >A	□; 不达标□	.,		达标区□	
	评价结论	底泥污染评价□			不达标区☑	
		水资源与开发利用程度	度及其水文情势设	平价□		
		水环境质量回顾评价。	_			
		流域(区域)水资源	(包括水能资源)	与开发利用总		
		体状况、生态流量管理要求	找与现状满足程 度	度、建设项目占		
		用水域空间的水流状况与沟	可湖演变状况□			
		依托污水处理设施稳定				
影	预测范围	河流: 长度() k	m;湖库、河口	及近岸海域: 面	积()km ²	

响	预测因子	(NH ₃ , H ₂ S)						
预			丰水期□;平水期□;枯水期□;冰封期□					
测	预测时期		春季□; 夏季□; 秋季□; 冬季□					
				设计水文条	• •			
			建设其	归;生产运行期□				
	预测背景			正常工况 () 非正				
				污染控制和减缓抗				
)域环境质量改善数值解□:解析解				
	预测方法			致恒辟□: 辟切辟 导则推荐模式♀				
	水污染控			寸火川岸行火八~				
	制和水环							
	境影响减		区(流)均	冰环境质量改善	目标口; 替代削》	載源□		
	缓措施有							
	效性评价							
		排放口	混合区外满足	水环境管理要求□	1			
		水环境	功能区或水功	能区、近岸海域环	不境功能区水质	达标□		
				水域水环境质量要	要求□			
			控制单元或断		- 1 - 1 - 1 - 1			
					要求,重点行业致	建设项目,主要污染		
	水环境影		等量或减量替		# 			
	响评价			境质量改善目标要 项目同时应包括:7		 价、主要水文特征值		
			生态流量符合		下 人用另文化[1]	川、工女小人竹祖祖		
影					成) 排放口的建设。	 投项目,应包括排放		
响			境合理性评价					
评		满足生	态保护红线、	水环境质量底线、	资源利用上线和	D环境准入清单管理		
价		要求□						
		污染	物名称	排放量/ (t/a)	排放浓	度/(mg/L)		
		C	OD	8.7235		50		
		,	SS	1.7447		10		
	污染物排		《 氮	0.8723		5		
	放量核算		总磷	0.0872		0.5		
		动植	植物油	0.0215		1		
		養大肠菌群 1.4×10 ¹³ 1000						
	替代源排	MPN MPN IN MP						
	放情况	汚染源名 排汚许可祉 汚染物名称 排放量/(t/a) 排放浓度/(mg/L)						
	NA IFI VI	() () () ()						
	生态流量							
	确定			水期 () m; 鱼类		· · · ·		
防	环保措施					; 区域削减 □; 依		

	治			托其他工程措施 □; 其他□					
	措			环境质量	污染源				
	施		监测方式	手动□;自动□;无监测☑	手动☑;自动□;无监测□				
		监测计划 监测点位		()	废水总排口				
			监测因子	()	(COD、SS、氨氮、总磷、动植物油、粪大肠菌群数)				
		污染物排							
☆ 放清単									
	评价结论 可以接受☑; 不可以				可以接受□				
	注:	"□"为勾选项	页打√;"	()"为内容填写项;"备注"为	其他补充内容。				

3.声环境影响分析

本项目运营期噪声主要来源于为水泵运转、油烟风机、冷却塔、冷冻机组以及污水 处理站通风风机、锅炉等设备噪声,同时还有各类商业用房活动噪声和汽车出入地下车 库的交通噪声。

(1)设备噪声

本项目运营期设备噪声主要来源于水泵运转、油烟风机、冷却塔、冷水机组、锅炉 噪声以及污水处理站通风风机,项目设备选型时优先选择低噪音设备。根据点声源噪声 衰减模式,可估算设备不同距离处的噪声值,预测模式如下:

 $L_r = L(r_0) - 20lg(r/r_0)$

式中: L---距离声源r处的声压级, dB(A);

 $L(r_0)$ —点声源声功率级,dB(A);

r—点声源到预测点的距离, m;

r₀—点声源到参照点的距离,默认值为 1m。

根据上述分析和计算公式,各设备的噪声影响计算结果见表 7-9。

表 7-9 点源噪声影响计算结果 单位: dB(A)

设备名称	噪声级	隔声量	5m	10m	20m	30m
水泵	85	25	40	34	28	24
风机	95	20	55	49	43	39
冷却塔	85	25	55	49	43	39
冷冻机组	90	25	60	54	38	34
锅炉	85	25	60	54	38	34

本项目高噪声设备主要分布在地下室和裙楼屋面,本项目主要通过安装减震基座、 隔声罩,距离衰减等措施减少噪声影响,从预测结果可知,通过采取上述降噪措施,项 目厂界噪声可达标排放,对周围声环境影响较小。

(2) 机动车辆行驶噪声

本项目交通噪声具有非常明显的时段性,上下班高峰期车流量与平常时间相差悬 殊,噪声影响主要集中在上下班高峰期。

根据类比调查,在平常时间(非上下班高峰期),进出车库的车辆很少,一般不会 发生交通堵塞,进出车库的路边交通噪声值基本上在 65 dB 以下,车辆噪声对周围环境 的影响较小。

在项目运营期间,应完善本项目建成区内的车辆管理制度;合理规划区内的车流方向,保持区内的车流畅通;禁止区内车辆随意停放,尤其是不得在人行道上停放;限制区内车辆的车速;禁止车辆鸣笛等。车库设在地下,利用地下室来屏蔽车库噪声,在出入口和地面临时停车场地周围加强绿化;同时加强车辆管理,禁鸣喇叭。采取这些措施实施后,对周围声环境基本无影响。

(3) 商业活动噪声

本项目商业用房引入具体项目时,限定进驻项目种类,不得引入容易产生噪声扰民和异味扰民的项目,同时要求加强对商业配套用房的管理,控制营业时间,针对引入的具体项目采取适当的防治措施。

4.固体废物影响分析

本项目固废主要为医疗废物、办公生活垃圾、厨余垃圾、隔油池污泥、污水处理站污泥。

(1) 危险废物

本项目医疗废物产生量为 243.13t/a, 污水处理站产生的污泥年产量约为 80t/a, 均属于危险废物,委托有资质单位处置。

(2) 生活垃圾

本项目生活垃圾产生量约为656.27t/a,由环卫部门清运处理。

(3)餐厨垃圾

本项目餐厨垃圾产生量为523.54t/a,委托符合相关要求专业机构处理。

(4) 废油脂

本项目废油脂产生量为 5.7t/a, 委托有资质单位处理。

本项目危废贮存室基本情况见表 7-10。

表 7-10 危险危废贮存室基本情况表

序号	危险废物 名称	产生量 (吨/年)	危险废 物类别	危险废物代 码	贮存方 式	贮存能 力(吨/ 年)	贮存 周期	贮存场所 (设施)名 称	占地面积 (m²)
1	医疗废物	243.13	HW01	831-001-01 831-002-01 831-003-01 831-004-01 831-005-01	桶装	2.0	2 天	危废暂 存室	20
2	污水处理站 污泥	80	HW01	831-001-01	桶装	10.0	1 个月	贮泥池	10

危险废物暂存室应按《危险废物贮存污染控制》(GB18597-2001)(2013 年修订)要求设置,并满足防风、防雨、防晒、防渗漏要求,应按规定设置警示标志,应分类存放,并设专人管理。危险废物应及时委托并外运相关有资质单位处置,按环保管理规定要求做好申报登记手续。

本项目危险固废转运处置依照危险废物转移联单制度填写和保存转移联单,使用具备明显危险废物标识的专用车辆密闭运输,运输过程采取跑冒滴漏防治措施,确保危险废物运输过程中不发生泄漏,对环境造成的影响较小。

综上所述,对项目各类固废特别是危废的收集、暂存、处置等过程采取相应污染防 范措施并加强规范化管理后,项目固废均可得到有效的处置和利用,最终实现零排放, 不会产生二次污染。

5.环境风险分析

根据《建设项目环境风险评价技术导则》(HJ/T169-2018),对本项目潜在的危险源和可能造成的污染事故及其环境影响进行分析、评价,并提出防止事故的对策建议,以达到降低风险、减少危害程度的目的。

(1) 风险识别

本项目为医疗机构,不从事工业生产活动,涉及的环境风险因素主要有: 1)药库内存放较多种类的试剂,该类物质具有易燃易爆、有毒的风险; 2)医疗废水处理设施事故状态下的排污风险; 3)医疗废物在收集、贮存、运送过程中的存在的风险; 4)次氯酸钠及其散发的氯气风险。

①物质风险识别

本项目涉及化学品主要有甲醛、乙醚、盐酸等,原辅材料在运输、贮存和使用过程中须严格遵守有关管理规定,避免扩散到人群和环境中造成危害。本项目主要危险化学品使用情况见表 7-11。

序号 用途 名称 最大存储量 临界量t qn/Qn 固定标本 甲醛 0.00008 1 1000mL 10 2 消毒 100 0.001 次氯酸钠 100kg 3 消毒 过氧乙酸 1000mL 5 0.00023 检验 乙酸 0.00001 4 100mL 10 无水乙醇 (分析纯) 5 检验 1000mL 500 0.0000008 甲醇 检验 100mL 10 0.0000086 7 消毒 盐酸 100L 7.5 0.00002 8 检验 乙醚 500mL 10 0.00004

表 7-11 主要危险化学品使用情况

由表 7-11 可知,根据《危险化学品重大危险源辨识》(GB18218-2018)所规定的临界量,本项目危险单元内存在的危险化学品为多品种, q1/Q1+q2/Q2+......qn/Qn<1,则未构成重大危险源。

②风险评价等级

本项目危险物质在厂界内的最大存在总量与临界量的比值为 0.001<1,该项目环境风险潜势为I,风险评价仅做简单分析,对风险事故分析、风险防范措施等给出定性的说明。

(2) 风险事故分析及防范措施

1) 危险物质的风险分析及防范措施

本项目危险物质具有毒性、腐蚀性、易燃性特性。有毒化学品的具有刺激性会损害 人体气管和肺组织,引起皮肤或者呼吸系统过敏,出现皮疹或水泡等症状;腐蚀性物品 接触人的皮肤、眼睛或肺部、食道等,会引起表皮细胞组织发生破坏作用而造成灼伤, 而且被腐蚀性物品灼伤的伤口不易愈合;易燃液体可能会燃烧而导致火灾事故发生。

本项目危险物质主要分放在不同颜色安全柜,设置安全柜可以预防火灾发生,漏液槽使意外流出的液体不外溢;保护人的生命安全、保护财产,环境;各种危险品的有效管理,不同颜色的安全柜功能不一样,可存放的化学用品也不同,分门别类存储,一目了然便于管理;在储存化学品的过程中,使用有色标签来识别、整理、分开各种易燃或

危险液体。这样做同时又能在发生火灾时方便消防人员识别危险。安全柜使用注意事项 见以下:

- ①化学品安全储存柜必须水平安装放置,为了保持安全柜在某些不平坦的位置水平摆放,可以通过调节底部的支脚来达到要求;
- ②防火孔,带有防火消焰装置的通风口,分别位于柜身的两侧,更好的保持通风和排气。这个孔在平时还是通风的,但在发生火灾的情况下,高温熔断熔线后,孔盖里的零件会自动撑开,然后密闭柜子。在特别要求时还要为安全柜增加通风系统;
- ③安全柜必须接地,防火安全柜要采用防静电设计,在购买化学品防火安全柜的时候,里面会配一根防静电导线,这根防静电导线的作用是消除与导走静电,防止静电火花造成的火灾。安全柜的接地包括内部接地和外部接地。

外部接地:在安全柜专门设置的接地点安装接地螺丝和接地线,接地线另一端连接在接地母线或者接地棒上。

内部接地: 当在安全柜内分装液体时,确保金属之间的电流导通性是很重要的。对于涂了漆的产品,你需要刮掉点漆露出金属部分以供连接。有些接地夹设计有锥形,以供刺破涂料。摇动接地夹,直到接地夹的刺破了涂料与金属部分接触。

- ④柜内易燃液体始终保持密封:
- ⑤柜外应张贴明显的标签尽量能反光或者夜光;
- ⑥采用双人双锁管理
- 2) 医疗废水事故排放的风险分析及防范措施

医疗废水处理过程中的事故因素主要是由于操作不当或处理设施维护不及时而失 灵,导致废水不能达标。医疗废水含有病原体等,不经有效处理可能会引起疫病扩散并 污染环境。项目将设足够大的事故池,可降低废水事故排放的风险。

3) 医疗废物风险分析

医疗垃圾中可能存在传染性病菌、病毒、化学污染物等有害物质,由于医疗垃圾具有空间污染、急性传染和潜伏性污染等特征,其病毒、病菌的危害性要比普通生活垃圾大得多。如在收集、储运、运送过程中处置不当,医疗垃圾会对大气、地下水、地表水、土壤等均有污染作用。

项目可采取的风险防范措施如下:

- ①医疗废物按照类别置于防渗、防锐器穿透的包装物或密闭的容器内,在危废暂存间暂存;
 - ②设专人管理,采取密闭措施,并按照规范设置警示标志;
 - ③暂存的医疗废物及时清运处理。
 - 4) 次氯酸钠及其散发的氯气风险分析

污水处理厂消毒剂采用的次氯酸钠经常用手接触,会出现手掌大量出汗、指甲变薄、毛发脱落等现象,同时在次氯酸钠长期存储过程中会放出微量的氯气,如长期集聚有可能引起氯气中毒。氯气中毒的明显症状是发生剧烈的咳嗽,由食道进入人体的氯气会使人恶心、呕吐、胸口疼痛和腹泻,长期低浓度接触,可引起慢性支气管炎、支气管哮喘等;可引起职业性痤疮及牙齿酸蚀症。1L空气中最多可允许含氯气 0.001mg,超过这个量就会引起人体中毒。该项目次氯酸钠长期存储量约为 5t,由于产生的氯气量较少,通过加强空气对流后,不会出现氯气中毒的现象。项目可采取的风险防范措施如下:

- ①操作人员佩戴直接式防毒面具(半面罩),戴化学安全防护眼镜,穿防腐工作服, 戴橡胶手套:
 - ②保持操作现场通风良好,通风不足时需安装强制排风扇;
- ③当通风效果不好或者发生氯气在空气中集聚, 1L 空气中氯气含量超过 0.001mg, 就会引起人体中毒。当出现人员中毒时:应及时将患者转移至空气新鲜处,立即就医。

(3) 环境风险评价结论

综合所述,项目在全面落实环境风险事故防范措施加强环境管理的前提下,能够有效避免环境风险事故的发生,可将环境影响降至最低,其环境风险影响是可接受的。项目环境风险评价自查表见表 7-12。

				70, 12	1 /6/	11-2-7-1 P		<i>,</i> ,			
ב	作内容					完成	情况				
凤	危险物质	名称	甲醛	次氯酸钠	过氧 乙酸	乙酸	无水	乙醇	甲醇	盐酸	乙醚
险调查	<i>一</i>	存在 总量 /t	1000 mL	100kg	1000 mL	100 mL	500m L	50L	100m L	100m L	500m L
	环境敏	大气	5	500m 范围	围内人口	人		5km	范围内力	\口数 <u>/</u>	人
	感性		每公	:里管段/	周边 200	m 范围卢	7人口数	女(最大)		/_	人

表 7-12 环境风险评价自查表

	地表	地表水功能敏感性	F1□	F2□		F3¢
	水	环境敏感目标分级	S1□	S2□		S3¢
	地下	地下水功能敏感性	G1□	G2□		G3¢
	水	包气带防污性能	D1 _□	D2□		D3¢
	大气 Q值	Q<1¢	1≤Q<10□	10≤Q<1	00□	Q>100□
质及工艺	水 Q 值	Q<1 ☑	1≤Q<10□	10≤Q<1	00□	Q>100□
统危险性	M 值	M1□	М2□	М3□		M4□
	P值	P 1□	P 2□	P3□		P4□
	大气	E1□	E2 ☑			Е3□
境敏感程 度	地表 水	E10	E2□	2 _□ E3 _□		Е3п
	地下水	E1 🗆	E2□			Е3п
境风险潜 势	$IV^+\square$	IV□	IIIo	IIロ		ΙØ
价等级		一级口	二级口	三级□]	简单分析☑
物质危 险性		有毒有害♀			易燃	
环境风 险类型		泄漏☑		火灾、爆		定伴生/次生污染物 ■放☑
影响途 径		大气☑	地表水	V		地下水☑
故影响分 析	3	源强设定方法□	计算法□	经验估算	法口	其他估算法☑
		预测模型	SLAB□	AFTOX		其他□
大气		新加建 电	大气毒性终点	京浓度-1 最	大影响	向范围m
		1灰砂 5日 木	大气毒性终点	京浓度-2 最	大影响	向范围m
地表水		最近环境敏感目	目标,	到达时间_		h
神下水		下游厂	区边界到达时间]	h	
地工小		最近环境敏感目	目标,	到达时间_		h
点风险防 范措施	减轻对 2 源。并 3	环境的影响; 项目应严格按有关要配备相应品种和数量的 室内供氧管道应涂刷	求注意安全事故 勺消防器材;	的发生,氧	气储	存应远离火种、热
	充 竟 价 本 收 地 地 地 点 危 敏度 风势 等 所 大 表 下 险 性 程 潜 级 危 风型途 分 人 水 水 水 防 性 日 大 <td< td=""><td>水 大Q水值 Q水值 Q、水值 Q、水值</td><td> Tuck Tuck </td><td> 大气 大気 大気 大気 大気 大気 大気 大気</td><td> N</td><td> 水域域感目标分数 S1n S2n 地下 水 地下水功能敏感性 G1n G2n 位气帯防汚性能 D1n D2n 大气 Q值 Q<1章 1≤Q<10m 10≤Q<100m 10≤Q<10m 10<p></p></td></td<>	水 大Q水值 Q水值 Q、水值 Q、水值	Tuck Tuck	大气 大気 大気 大気 大気 大気 大気 大気	N	水域域感目标分数 S1n S2n 地下 水 地下水功能敏感性 G1n G2n 位气帯防汚性能 D1n D2n 大气 Q值 Q<1章 1≤Q<10m 10≤Q<100m 10≤Q<10m 10 <p></p>

	4)设足够大的事故池,降低废水事故排放的风险;
	5) 医疗废物按照类别置于防渗、防锐器穿透的包装物或密闭的容器内,在
	危废暂存间暂存,并及时清运处理。
	通过采取氧气罐防范措施、医疗废水等事故应急措施、医疗固废防范等措
评价结论与	施,可以较为有效的最大限度防范风险事故的发生和有效处置,该项目所发生
建议	的环境风险在较低的水平,风险发生概率极低,该项目的事故风险处于可接收
	水平。
注."□"为勾计	先项,""为填写项。

6.排污口规范化设置

按《江苏省排污口设置及规范化整治管理方法》[苏环控(1997)122号]的有关要 求,该建设项目污水接管口、废气排口、固废临时堆场必须进行规范化设置。

- (1) 本项目生活污水应设有污水接管口, 生活污水和医疗废水经预处理达标后排 入市政污水管网,最终由桥北污水处理厂集中处置,在污水排放口附近醒目处应设置环 境保护图形标志。
 - (2) 本项目设有废气排口,需在排气筒附近地面醒目处,设置环保图形标志牌。
- (3) 对于固体废物,应设置专用的临时贮存设施或堆放场地,废物应用桶、罐装 好存放,并应加强暂存期间的管理,做好安全防护工作,防止发生二次污染。厂内临时 贮存或堆放的场地应设置环保图形标志牌。

7.外环境影响分析

本项目周边 500 米范围内现状主要为居住区、办公区、学校和医院等, 无工业企业, 目 500m 范围内规划无工业用地。外环境对该项目的影响源主要就是南侧广西埂大街和 东侧浦辉路的交通噪声。

(1) 交通噪声预测

广西埂大街属于规划城市次干路, 道路红线宽为 40m, 道路横断面布置为: 3m(人 行道)+3.5m(非机动车道)+2m(侧分带)+23m(机动车道)+2m(侧分带)+3.5m+3m(人 行道)=40, 广西埂大街道路横断面如图 7-3 所示。

浦辉规划等级为城市次干道。道路红线宽为 35m, 断面分配: 4m(人行道)+3.5m(非 机动车道)+2m(侧分带)+16m(机动车道)+2m(侧分带)+3.5m(非机动车道)+4m(人 行道)=35, 浦辉路横断面如图 7-4 所示。

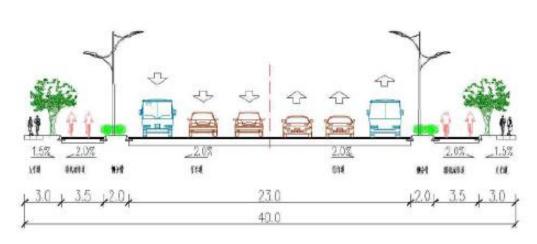


图 7-2 广西埂大街横断面

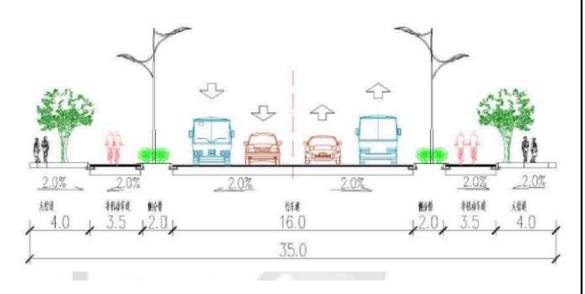


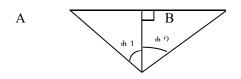
图 7-3 浦辉路横断面

按导则 HJ2.4-2009 附录 A2 公路交通运输噪声预测基本模式来预测公路交通噪声对该项目声环境的影响。

① 第 i 类车等效声级的预测模式

$$\begin{split} \mathbf{L}_{eq}\left(h\right)_{i} = & \left(\overline{\mathbf{L}_{0\mathrm{E}}}\right)_{\mathrm{i}} + 10 \lg \left(\frac{N_{\mathrm{i}}}{V_{i}T}\right) + 10 \lg \left(\frac{7.5}{r}\right) + 10 \lg \left(\frac{\Psi_{1} + \Psi_{2}}{\pi}\right) + \Delta L - 16 \\ \\ \text{式中: } \mathbf{L}_{eq}\left(h\right)_{i} - \mathbf{第}\mathrm{i} \\ \text{类车的小时等效声级,dB;} \end{split}$$

 $\left(\overline{L_{\scriptscriptstyle 0E}}\right)_{\!\scriptscriptstyle i}$ —第i类车速度 V_i ,km/h;水平距离为7.5米处的能量平均A声级,dB;


N:—昼间、夜间通过某个预测点的第i类车平均小时交通量,辆/h;

r—从车道中心线到预测点的距离, m: 适用于r > 7.5 m预测点的噪声预测:

Vi---第i类车的平均车速,km/h;

T—计算等效声级的时间, 1h;

 Ψ_1 、 Ψ_2 —预测点到有限长路段两端的张角,弧度,见下图所示;

р

图7-4 有限路段的修正函数, A-B为路段, P为预测点

 ΔL —由其他因素引起的修正量, dB: 可按下式计算:

$$\Delta L = \Delta L_1 - \Delta L_2 + \Delta L_3$$

$$\Delta L_1 = \Delta L_{BB} + \Delta L_{BB}$$

$$\Delta L_2 = A_{atm} + A_{gr} + A_{bar} + A_{misc}$$

式中: ΔL_1 — 线路因素引起的修正量, dB;

 $\Delta L_{\text{\tiny MR}}$ —公路纵坡修正量,dB;

 ΔL_{KM} — 公路路面材料引起的修正量, dB;

 ΔL_2 一声波传播途径中引起的衰减量,dB;

 ΔL_3 — 由反射等引起的修正量,dB。

各类汽车在行驶中平均辐射声级按《公路建设项目环境影响评价规范》,大、中、 小型车的计算公式分别为:

小型车 $L_{oS} = 12.6 + 34.73 \lg V_S + \triangle L_{Ball}$;

中型车 $L_{oM} = 8.8 + 40.48 lg V_M + \triangle L_{yy}$;

大型车 L_{oL} =22.0+36.32lgV_L+△L _{纵坡}

② 混合车流模式的等效声级是将各类车流等效声级叠加求得。如果将车流分成大、中、小三类车,那么总车流等效等级为:

$$L_{eq}(T) = 101g(10^{0.1\text{Leq(h)}^{\pm}} + 10^{0.1\text{Leq(h)}^{\mp}} + 10^{0.1\text{Leq(h)}^{\dagger}})$$

其中: $(L_{Aeq})_{+}$ 、 $(L_{Aeq})_{+}$ 、 $(L_{Aeq})_{+}$ ---分别为大、中、小型车辆昼间或夜间,预测点接到的交通噪声值,dB;

 $(L_{Aea})_{\circ}$ --- 预测点接收到的昼间或夜间的交通噪声值,dB;

 ΔL_{I} ---- 公路曲线或有限长路段引起的交通噪声修正量,dB;

 ΔL_2 ----公路与预测点之间的障碍物引起的交通噪声修正量,dB;

③ 模式参数的确定

表 7-13 广西埂大街噪声预测参数表

		<u> </u>	, , , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* * *	
		昼间			夜间	
车型	车流量	V _i (km/h)	$\overline{(I_{-})}$	车流量	V _i (km/h)	$\overline{(I_{-})}$
	(pcu/h)	V ₁ (KIII/II)	$(L_{oe})_i$	(pcu/h)	V ₁ (KIII/II)	$(L_{oe})_i$
大型	80	23.26	71.64	27	23.23	71.62
中型	160	23.12	64.02	53	23.06	63.97
小型	35	561	65.64	187	33.93	65.76

表 7-14 浦辉路噪声预测参数表

		昼间			夜间	
车型	车流量	Vi	$\overline{(I_{-})}$	车流量	V _i (km/h)	
	(pcu/h)	(km/h)	$(L_{oe})_i$	(pcu/h)	V _i (KIII/II)	$(L_{oe})_i$
大型	37	34.91	78.04	9	34.85	78.01
中型	84	34.69	71.15	21	34.59	71.1
小型	278	50.58	71.78	70	50.9	71.88

③噪声预测结果

本项目用地红线与南侧广西梗大街道路红线重合,本项目医疗中心距离广西梗大街最近为 25m,本项目综合楼距离浦辉路边界最近为 40m,由于道路交通噪声对临路一侧建筑物产生的影响较大,在考虑建设项目边界绿化带作用及其他因素和距离衰减后,广西梗大街、东侧浦辉路对本项目的噪声预测结果见表 7-15。

表 7-15 广西埂大街交通噪声对本项目(南侧医疗中心)的影响预测

	噪声预测影	响 dB(A)	本底值 dB(A)		预测值 dB(A)	
	昼间	夜间	昼间	夜间	昼间	夜间
医疗中心	55.1	50.4	51.1	43.4	56.6	51.2
标准值	70	55	60	50	70	55

由上表可知,根据噪声预测结果,本项目医疗中心受广西埂大街交通噪声影响,其环境昼间、夜间噪声均能满足《声环境质量标准》(GB3096-2008)4a 类标准要求。

表 7-16 浦珠路交通噪声对本项目(西侧综合楼)的影响预测

预测点	噪声预测	影响 dB(A)	本底值	dB(A)	预测值	dB(A)
1.以例1.从	昼间	夜间	昼间	夜间	昼间	夜间
综合楼	53.8	47.8	58.6	43.9	59.9	49.3
标准值	60	50	60	50	60	50

由上表可知,根据噪声预测结果,本项目综合楼声昼、夜间环境噪声能满足《声环
境质量标准》(GB3096-2008)2 类标准要求。
总上所述:本项目所在区域声环境执行2类区标准,临广西梗大街侧执行4a类。
由本次外部交通噪声对该项目的影响的预测结果(见表 7-15~16)可以看出,本项目建
筑物能够满足噪声功能要求。本项目靠近道路均为医疗中心、综合管理楼,住院楼距离
广西梗大街约为82m、距离浦辉路约有141m,所以交通噪声对该项目的影响很小。

八、建设项目拟采取的防治措施及预期治理效果

内容 类型	排放源(编号)	污染物名称	防治措施	预期治理效果	
	食堂及餐饮油烟	油烟	专用烟道、油烟净化器	达标排放	
大气	污水处理站	氨、硫化氢	生物滤池除臭、1 根 15 高 排气筒排放	达标排放	
大气污染物	锅炉废气	SO ₂ 、NO _x 、颗粒物	低氮燃烧器、1 根 43 米高排气筒高空排放	达标排放	
	地下车库尾气	NMHC, NO ₂ , CO	机械通风	达标排放	
	职工生活污水	COD、SS、氨氮、总磷	污水管网		
水污染物	医疗废水	COD、SS、氨氮、总磷、 粪大肠菌群数	污水管网、污水处理站 ("A/O+沉淀+消毒"法)	达到桥北污水处理	
物物	食堂及餐饮废水	COD、SS、氨氮、总磷、 动植物油	污水管网、隔油池	厂接管标准	
	锅炉排污水	COD, SS	污水管网		
	生活	生活垃圾	环卫部门清运		
問	食堂厨房和餐厅	餐饮垃圾	委托有专门单位处置		
固 体 废 物	隔油池	废油脂		安全处置	
12J	医疗过程	医疗废物	委托有危废处置资质单位	-	
	污水处理	污水处理站污泥	处置		
	本项目主要噪声源	来自于设备噪声、商业流	舌动噪声和地下车库噪声,高	噪声设备产生的噪	
噪	声经选用低噪声设	备、安装减震基座、隔声	声罩及距离衰减后减少噪声影	响,地下车库噪声	
操 声	通过建筑物隔声,	加强管理,商业活动噪声	声通过加强管理减少噪声影响	」,采取上述措施,	
	本项目厂界噪声可	满足《工业企业厂界环场	意噪声排放标准》(GB12348	-2008) 2 类标准。	
其他	无。				

生态保护措施预期效果:施工期间严格按照要求施工,同时做好建设后的生态保护和恢复,从而减少施工期间的水土流失;项目投入运营后,由于排水设施、护坡工程的完善以及植物的绿化美化,工程区域的水土流失将消失,因此,本项目建设期水土流失加重是暂时的。

建设项目"三同时"环保设施

本项目"三同时"验收情况见表 8-1。

表 8-1 本项目"三同时"验收一览表

类别	污染源	污染物	治理措施(设施数量、 规模、处理能力等)	处理效果、执行标准	环保投资 (万元)	完成 时间
	食堂及餐 饮油烟	油烟	专用烟道、油烟净化 器	《饮食业油烟排放 标准(试行)》 (GB18483-2001) 中相应的标准	20	
废气	污水处理 站	氨气、硫化氢	生物滤池除臭、1 根 15 米高排气筒	《恶臭污染物排放 标准》 (GB14554-93)表 2	15	
	锅炉	SO ₂ 、NO _x 、颗粒物	低氮燃烧器、1 根 43 米高排气筒	《锅炉大气污染物 排放标准》 (GB13271-2014) 中表	10	
	地下车库	NMHC、NO ₂ 、CO	机械通风	达标排放	15	
	职工生活 污水	COD、SS、氨氮、 总磷	污水管网			
 废水	医疗废水	COD、SS、氨氮、 总磷、粪大肠菌群	污水处理站("A/O+沉 淀+消毒"法)	达到桥北污水处理	40	
	饮废水	COD、SS、氨氮、 总磷、动植物油	隔油池、污水管网	厂接管标准		与
	锅炉排污水	COD, SS	污水管网			主体
	生活垃圾	生活垃圾	环卫清运			工 程
 固废	厨余垃 圾	食物残渣	委托专门单位处置	安全处置	6	同步
	隔油池	废油脂				进行
	危险废 物	医疗废物、污水处 理站污泥	危废暂存室,委托有 资质单位处置		15	,,
	机械设 备		设备减振、安装隔声 罩等措施		10	
噪声	车辆行 驶	等效连续 A 声级	加强管理、建筑物隔 声	达标排放	5	
	商业活 动		加强管理		4	
环境管 理(机 构、监 力)			依托第三方机构		/	
雨污 排 流 口		扌	非 污口规范化设置		20	
			合计		160	

九、结论与建议

1.项目概况

南京红瑞建设管理有限公司拟投资 96000 万元,新建红瑞国际糖尿病专科医学中心,项目总用地面积为 29781.39m²,建筑总面积约为 120000m²,其中地上建筑面积约为 60000m²,地下建筑面积约为 60000m²,主要建设内容主要为医院用房及配套用房。本项目已取得南京市江北新区管理委员会行政审批局(宁新区审备[2018]479 号)。项目拟设床位 794 张,门诊量约 10 万人次/年。

2.与相关政策符合性分析

本项目属于糖尿病专科中心项目,根据《产业结构调整指导目录(2011年本)》(2013修正本),本项目为鼓励类中第36条第24项"预防保健、卫生应急、卫生监督服务设施建设"和第29项"医疗卫生服务设施建设"的建设项目。

对照《江苏省工业和信息产业结构调整指导目录》及关于修改《江苏省工业和信息产业结构调整指导目录(2012年本)》部分条目的通知(苏经信产业[2013]183号),《江苏省工业和信息产业结构调整限制、淘汰目录和能耗限额》(2015年本)、《市政府关于印发南京市建设项目环境准入暂行规定的通知》(宁政发[2015]251号),

综上所述, 本项目建设符合国家及地方的相关产业政策要求。

3.与相关规划相符性分析

根据《南京国际健康城产业规划图》,本项目所在地块规划用地性质为医院用地,因此本项目建设符合《南京国际健康城产业规划图》中土地利用规划。

根据市政府办公厅关于印发南京市"十三五"医疗机构设置规划的通知(宁政办发 [2017]18号),该项目位于明城墙以外约26公里处,因此,该项目所在区域为南京市的医疗鼓励发展区,与南京市"十三五"医疗机构设置规划相符合。

南京国际健康服务社区是江北新区率先启动发展的区域,社区位于江北新条件优越。社区将是未来 10 年江北新区居住条件最便利,居住环境最优越的高端人群最密集的区域。南京国际健康服务社区定位为国际化标准的人性化服务体验、医养护一体化、宜业宜居宜养的国际健康服务社区。

本项目为医疗中心项目,本项目建设符合南京国际健康城规划的要求。

4."三线一单"相符性分析

(1) 生态红线

经查阅,距离本项目最近的生态红线区域为南京老山森林公园,距项目最近距离约为3.1km,本项目建设区域与该红线区域无相交区域,不涉及南京市浦口区范围内的生态红线区域,不会导致南京市浦口区辖区内生态红线区域服务功能下降。故本项目的建设符合《南京市生态红线区域保护规划》的相关要求。

(2) 环境质量底线

根据项目所在地环境质量状况评价可知,项目所在地的环境空气质量除 PM₁₀和 PM_{2.5} 超标之外,其余污染物均达到《环境空气质量标准》(GB3095-2012)二级标准(及 2018 修改清单),具有一定的环境容量。

本项目建设后会产生废气、废水、噪声产生,但在采取相应的污染防治措施后,各类污染物的排放一般不会对周边环境造成不良影响,即不会改变区域环境功能区质量要求,能维持环境功能区质量现状。本项目不突破周边环境质量底线。

(3) 资源利用上线

本项目用水取自市政自来水,用电来源为市政供电,项目运营期间用水、用电量较小,不会超过资源利用上线。

(4) 环境准入负面清单

经查阅,本项目符合国家及地方产业政策和《市政府关于印发南京市建设项目环境准入暂行规定的通知》(宁政发[2015]251号)要求。

综上所述,本项目建设符合"三线一单"要求。

5.与"两减六治三提升"专项行动方案相符性分析

《"两减六治三提升"专项行动方案》江苏省环境隐患治理专项行动实施方案中 (确保危险废物安全处置)提出"加强危险废物规范化管理",本项目产生的医疗废物、污水处理站污泥属于危险废物,企业按照《危险废物贮存污染控制》(GB18597-2001) (2013年修订)设有危废暂存场所,并委托给有资质的单位进行处置。故本项目建设满足《"两减六治三提升"专项行动方案》的相关要求。

6.污染物达标排放及环境影响分析

(1) 废气

本项目产生的废气主要为食堂及餐饮油烟废气、污水处理站恶臭、锅炉废气和地

下车库尾气。食堂及餐饮废气经专用烟道引至楼顶经油烟净化器处理后达标排放;污水处理站恶臭气体经密闭收集生物滤池除臭处理后由 15m 高排气筒高空达标排放;锅炉燃烧废气经 1 根 43 米高排气筒高空达标排放,对周围大气环境影响较小;地下车库尾气通过设置机械强制通风系统、合理布设排放口,经扩散稀释对周边大气环境影响较小。

(2) 废水

本项目医疗废水经污水处理站达到《医疗机构水污染物排放标准》 (GB18466-2005)表2预处理标准,食堂及餐饮废水经隔油池预处理,汇同上述医疗废水、生活污水、锅炉排污水一起达到接管标准,接入市政污水管网,送至桥北污水处理厂集中处理,尾水处理达《城镇污水处理厂污染物排放标准》(GB18918-2002)表1中一级A级标准,尾水排入长江。

本项目废水经处理达标纳管排放后,对周围水体影响较小。

(3) 噪声

本项目运营期的噪声污染源主要为设备噪声、机动车辆行驶噪声及商业活动噪声。本项目通过采取低噪声设备、安装减震基座、隔声罩、距离衰减等措施,本项目厂界噪声可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的2类标准,对周围声环境影响较小。

(4) 固体废物

本项目固废主要为生活垃圾,厨余垃圾、废油脂、医疗废物、污水处理站污泥、 废离子交换树脂。生活垃圾由环卫部门,厨余垃圾及废油脂委托专门单位处理,医疗 废物、污水处理站污泥均为危险废物,委托有资质的单位处置。

本项目固废均得到妥善处置,对周围环境影响较小。

因此,本项目在实施过程中,通过各项污染防治措施,能有效地控制污染物的排放,实现污染物达标排放的目标。

7.总量控制

- (1) 废气:本项目有组织废气为氨 0.0087t/a,硫化氢 0.0002t/a, SO_2 0.311/a、NOx 0.423t/a、烟尘 0.187t/a;油烟排放量为 0.026t/a,均作为考核因子,不申请总量。
 - (2) 废水: 本项目废水污染物接管量为: 废水量 174993.4t/a、COD 50.563t/a、

SS 14.946t/a、氨氮 6.497t/a、总磷 0.851t/a、动植物油 0.537t/a;最终外排量为:废水量 174993.4t/a、COD 8.724t/a、SS1.745t/a、氨氮 0.872t/a、总磷 0.0872t/a、动植物油 0.0215t/a。接管量作为考核量,水污染物最终排环境量作为申请水污染总量指标的依据,由环保主管部门在桥北污水处理厂内平衡解决。

(3) 固废:本项目产生的固体废物均得到妥善处理处置,排放总量为零。

8.总结论

综上所述,本项目建设符合国家及地方产业政策相关要求,选址可行。项目在 运营期间,经采取相应污染防治措施后,废气、废水、噪声、固废等各项污染物均 可实现达标排放或妥善处置和综合利用,对区域环境质量不会产生明显不利影响。 因此,在落实本环评提出的各项污染防治措施的前提下,从环保角度出发,本项目 建设是可行的。

9.建议

切实加强废气、废水环保设施的日常维护,确保污染物达标排放;固体废物应及时清理,避免二次污染;严格执行环保三同时制度。

上述结论是在建设单位确定的建设方案和规模基础上得出的,若建设单位方案、规模发生重大变化,则应另向有关部门申报,并重新进行环境影响评价。

预审意见:			
	公	章	
经办人:	年	月	日
下一级环境保护行政主管部门审查意见:	公	· 章	

审批意见:	
	公 章
经 办 人:	年 月 日

注 释

- 一、本报告表应附以下附件、附图:
- 附件1委托书
- 附件2项目备案通知证
- 附件 3 营业执照
- 附件4声明
- 附件 5 不动产权证书
- 附件 6 关于印发《南京江北新区核心区"区域环评+环境标准"改革试点实施方
- 案(试行)》的通知
 - 附件 7 环评审批基础信息表
 - 附件8公示截图
 - 附件9 洗衣房废水委外协议
 - 附件 10 关于进一步明确燃气锅炉低氮改造相关要求的通知
 - 附图 1 建设项目地理位置图
 - 附图 2 建设项目周围概况图
 - 附图 3 建设项目平面布置图
 - 附图 4 建设项目与生态红线关系图
 - 附图 5 桥北污水处理厂污水管网图
 - 附图 6 南京国际健康城规划图
 - 二、如果本报告表不能说明项目产生的污染及对环境造成的影响,应进行专项评价。根据建设项目的特点和当地环境特征,应选下列 1-2 项进行专项评价。
 - 1.大气环境影响专项评价
 - 2.水环境影响专项评价(包括地表水和地下水)
 - 3.生态环境影响专项评价
 - 4.声影响专项评价
 - 5.土壤影响专项评价
 - 6.固体废弃物影响专项评价
 - 7.辐射环境影响专项评价(包括电离辐射和电磁辐射)
- 以上专项评价未包括的可另列专项,专项评价按照《环境影响评价技术导则》中的要求进行。